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Abstract

Motivation: Molecular biology and ecology studies can produce high dimension data. Estimating
correlations and shared variation between such data sets are an important step in disentangling the
relationships between different elements of a biological system. Unfortunately, classical approaches are
susceptible to producing falsely inferred correlations.
Results: Here we propose a corrected version of the Procrustean correlation coefficient that is robust to
high dimensional data. This allows for a correct estimation of the shared variation between two data sets
and the partial correlation coefficients between a set of matrix data.
Availability: The proposed corrected coefficients are implemented in the ProcMod R package available
on CRAN. The git repository is hosted at https://git.metabarcoding.org/lecasofts/ProcMod
Contact: eric.coissac@metabarcoding.org

1 Introduction
Multidimensional data and even high-dimensional data, where the
number of variables describing each sample is far larger than the
sample count, is now routinely produced in functional genomics (e.g.
transcriptomics, proteomics or metabolomics) and molecular ecology (e.g.
DNA metabarcoding and metagenomics). Using a range of techniques, the
same sample set can be described by several multidimensional data sets,
each of them describing a different facet of the samples. This enables data
analysis methods to evaluate mutual information shared by these different
descriptions.

Correlative approaches are one of the simplest approaches to decipher
pairwise relationships between multiple datasets . For a long time, several
coefficients have been proposed to measure correlations between two
matrices (for a comprehensive review see Ramsay et al., 1984). However,
when applied to high-dimensional data, these approaches suffer from over-
fitting, resulting in high estimated correlations even for unrelated data
sets. The creation of incorrect correlations from over-fitting consequently
affects the biological interpretation of the analysis (Chariton et al., 2010)
can have downstream effects on the biological interpretation of a study. A
number of modified matrix correlation coefficients have been proposed to
address this issue. For example, the RV2 coefficient (Smilde et al., 2009)
corrects for overfitting of the original RV coeffcient (Escoufier, 1973).
Similarly, a modified version of the distance correlation coeffcient dCor

(Székely et al., 2007) proposed by SzéKely and Rizzo (2013) dCor has the
advantage over the other correlation factors by considering by not being
restricted to linear relationships.

Here we focus on the Procrustes correlation coefficient (RLs) proposed
by Lingoes and Schönemann (1974) and by Gower (1971). Define Trace,
a function summing the diagonal elements of a matrix. For an n × p real
matrix X and a second n × q real matrix Y defining respectively two
sets of p and q centered variables caracterizing n individuals, we define
CovLs(X,Y) following Equation (1)

CovLs(X,Y) =
Trace((XX′YY′)1/2)

n− 1
(1)

and VarLs(X) as CovLs(X,X). RLs can then be expressed as
follow in Equation (2).

RLs(X,Y) =
CovLs(X,Y)√

VarLs(X) VarLs(Y)
(2)

Considering CovLs(X,Y) and VarLs(X), respectively corresponding
to the covariance of two matrices and the variance of a matrix,
Equation (2) highlighting the analogy between RLs and Pearson’s
correlation coefficient (R) (Bravais, 1844). When p = 1 and q =

1, RLs = |R|. Like the squared Pearson’s R, the squared RLs is an
estimate of the amount of variation shared between the two datasets.

Procrustean analyses have been proposed as a good alternative to
Mantel’s statistics for analyzing ecological data summarized by distance
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matrices (Peres-Neto and Jackson, 2001). In Procrustean analyze, distance
matrices are projected into an orthogonal space using metric or non metric
multidimensional scaling according to the geometrical properties of the
used distances. Correlations can then be estimated on these projections.

2 Approach
RLs is part of the Procrustes framework that aims to superimpose a set
of points with respect to another through three operations: a translation,
a rotation, and a scaling. The optimal transfer matrix RotX→Y can be
estimated from the singular value decomposition (SVD) of the covariance
matrix X′Y . SVDs factorize any matrix as the product of three matrices
(Equation 3).

X′Y = UΣV′ (3)

U and V are two rotation matrices which computes the transfer matrix
to superimpose X on Y or reciproquely Y on X. All the elements of
Σ except its diagonal are equal to zero. The diagonal elements are the
singular values. Singular values are the extention of the eigenvalues to
non-square matrices. CovLs(X,Y) can also be computed from singular
values (Equation 4).

CovLs(X,Y) =
Trace(Σ)

n− 1
(4)

This expression actually illustrates that CovLs(X,Y) is the variance
of the projections of X on Y or of the reciprocal projections.
Therefore CovLs(X,Y) and RLs(X,Y) are always positive and
rotation independant. Here we propose to partitionate Trace(Σ), the
variation amount corresponding to CovLs(X,Y), in two components.
The first corresponds to the actual shared information between X and Y.
The second, corresponds to the over-fitting effect. It that can be estimated
as the average variation shared by two random matrices of same structure
as X and Y noted RCovLs(X,Y). ICovLs(X,Y), the informative part
of CovLs(X,Y), is computed using Equation (5).

ICovLs(X,Y) = Max

CovLs(X,Y)− RCovLs(X,Y)

0
(5)

Similarly the informative counter-part of VarLs(X) is defined as
IVarLs(X) = ICovLs(X,X), and IRLs(X,Y) the informative
Procrustes correlation coefficient as defined in Equation (6.

IRLs(X,Y) =
ICovLs(X,Y)

IVarLs(X) IVarLs(Y)
(6)

As in the case of RLs(X,Y), IRLs(X,Y) ∈ [0; 1], the 0 value
corresponding to no correlation and the maximum value 1 reflects two
strictly homothetic data sets.

The corollary of ICovLs(X,Y) and IVarLs(X) definitions is that
ICovLs(X,Y) > 0 and IVarLs(X) > 0. Therefore for M =

{M1,M2, ...,Mk} a set of kmatrices with the same number of rows, the
informative covariance matrix C defined as Ci,j = ICovLs(Mi,Mj)

is definite positive and symmetrical. This allows for defining the precision
matrix P = C−1 and the related partial correlation coefficent matrix
IRLspartial using Equation (7)

IRLspartial(Mi,Mj) =
Pi,j√
Pi,iPj,j

(7)

3 Methods

3.1 Monte-Carlo estimation of RCovLs(X,Y)RCovls(X,Y)

For every values of p and q including 1, RCovLs(X,Y) can be estimated
using a series of k random matricesRX = {RX1,RX2, ...,RXk} and
RY = {RY1,RY2, ...,RYk} where each RXi and RYi have the
same structure as X and Y, respectively, in terms of number of columns
and of the covariance matrix of these columns.

RCovLs(X,Y) =
Σk

i=1 CovLs(RXi,RYi)

k
(8)

To estimate IVarLs(X), which is equal to ICovLs(X,X) ,
RCovLs(X,X) is estimated with two independent sets of random matrix
RX and RY , both having the same structure than X.

Empirical assessment of RCovLs(X,Y)

For two random vectors x and y of length n, the average coefficient of
determination is R2 = 1/(n − 1). This value is independent of the
distribution of the x and y values, but what about the independence
of RCovLs(X,Y) to the distributions of X and Y ? To test
this independance and to assess the reasonnable randomization effort
needed to estimate RCovLs(X,Y), this value is estimated for four
matrices K, L, M, N of n = 20 rows and 10, 20, 50, 100 columns,
respectively. Values of the four matrices are drawn from a normal or
an exponential distribution, with k ∈ {10, 100, 1000} randomizations
tested to estimate RCovLs(X,Y) and the respective standard deviation
σ(RCovLs(X,Y)). The VarLs of the generated matrices is equal to 1,
therefore the estimated CovLs are equals to the RLs.

3.2 Simulating data for testing sensibility to overfitting

To test overfitting, correlations were mesured between two random
matrices of same dimensions. Each matrix is n × p with n = 20 and
p ∈ [2, 50]. Each p variables were drawn from a centered and reduced
normal distribution N (0, 1). Eight correlation coefficients were tested:
RLs the original Procrustes coefficient ; IRLs this work ; RV the original
R for vector data (Robert and Escoufier, 1976) ; RV adjMaye, RV 2 and
RV adjGhaziri three modified versions of RV (El Ghaziri and Qannari,
2015; Mayer et al., 2011; Smilde et al., 2009) ; dCor the original distance
correlation coefficient (Székely et al., 2007) ; and dCor_ttest, a modified
version of dCor not sensible to overfitting (SzéKely and Rizzo, 2013).
For each p value, 100 simulations were run. Computation of IRLs were
estimated with 100 randomizations.

For p = 1, random vectors with n ∈ [3, 25] are generated. As above,
data were drawn fromN (0, 1) and k = 100 simulations which were run
for eachn. The original Pearson correlation coefficientR and the modified
version IR are used to estimate correlation between both vectors.

3.3 Empirical assessment of the coefficient of
determination

As in the case of the coefficient of determination (R2), RLs2 represents
the part of shared variation between two matrices. Because of over-fitting
in high-dimension data, RLs and therefore RLs2 are over-estimated.

Between two matrices
To test how the IRLs version of the coefficient of determination IRLs2

can perform to evaluate the shared variation, pairs of random matrices
were produced for two values of p ∈ {10, 100} and n ∈ {10, 25},
and for several levels of shared variations ranging between 0.1 and 1

using 0.1 increments. For each combination of parameters, k = 100

simulations were run, and both RLs2 and IRLs2 were estimated using
100 randomizations.
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Fig. 1. Theoretical distribution of the shared variation between the four matrices
(A, B, C, D), expressed in permille.

Between two vectors
Coefficient of determination between two vectors also suffers from over-
estimation when n, the number of considered points, is small. On average,
for two random vectors of size n, R2 = 1/(n − 1). This random part
of the shared variation inflates the observed shared variation even for
non-random vectors. In the context of multiple linear regression, Theil
(1958) proposed an adjusted version of the coefficient of determination
(Equation 9), correcting for both the effect of the number of vectors (p)
and the vector size (n).

R2
adj = 1− (1−R2)

n− 1

n− p− 1
(9)

To evaluate the strength of that over-estimation and the relative effect
of the correction proposed by Theil (1958) and by IRLs, pairs of random
vectors were produced for n ∈ {10, 25}, and for several levels of shared
variations ranging between 0.1 and 1 using 0.1 increments. For each
combination of parameters, k = 100 simulations were run, andR2,R2

adj

and IRLs2 were estimated using 100 randomizations.

Partial determination coefficients
To evaluate the capacity of partial determination coefficient IRLs2partial
to distangle nested correlations, a set of correlated matrices were generated.
To generate two random matrices A, B, sharing w ∈ [0, 1] part of
variation, two independent random matrices A and ∆ were generated
such as VarLs(A) = 1 and VarLs(∆) = 1.The ∆rot matrix was
computed as the alignment of ∆ on A using the optimal Procrustes
rotation. Then B is computed using equation 10 :

B = A×
√
w + ∆rot ×

√
1− w. (10)

Following this method, four matricesA, B, C, and Dof sizen×p =

20 × 200 were generated where A shares 80% of variation with B,
that shares 40% of variation with C, sharing 20% of variation with
D. As illustrated in Figure 1, These direct correlations induce indirect
ones spreading the total variation among each pair of matrices. The
simulation was repeated 100 times, for every simutation IRLs2partial
and RLs2partial were estimated for each pair of matrices.

Table 1. Estimation of RCovLs(X,Y) according to the number of
random matrices (k) aligned.

normal exponential
p k mean sd mean sd

10
10 0.5903 1.3513× 10−2 0.6106 1.6980× 10−2

100 0.5812 3.1636× 10−3 0.5849 3.2563× 10−3

1000 0.5806 1.1564× 10−3 0.5801 1.1515× 10−3

20
10 0.7642 5.3833× 10−3 0.7760 6.2222× 10−3

100 0.7639 2.3330× 10−3 0.7676 1.9466× 10−3

1000 0.7658 6.8923× 10−4 0.7671 6.6033× 10−4

50
10 0.9089 2.6282× 10−3 0.9086 2.4032× 10−3

100 0.9089 8.1126× 10−4 0.9092 9.2665× 10−4

1000 0.9086 2.8590× 10−4 0.9091 2.8450× 10−4

100
10 0.9524 1.4734× 10−3 0.9536 1.3515× 10−3

100 0.9541 4.9602× 10−4 0.9550 4.6578× 10−4

1000 0.9544 1.4547× 10−4 0.9546 1.4249× 10−4

3.4 Testing the significance of IRLs(X,Y)iRls(X,Y)

The significance of IRLs(X,Y) can be tested using permutation test
as defined in Jackson (1995) or Peres-Neto and Jackson (2001) and
implemented respectively in theprotestmethod of the vegan R package
(Dixon, 2003) or the procuste.rtestmethod of the ADE4 R package
Dray and Dufour (2007).

It is also possible to take advantage of the Monte-Carlo
estimation of RCovLs(X,Y) to test that ICovLs(X,Y) and therefore
IRLs(X,Y) are greater than expected under random hypothesis.
Over the k randomizations, N>CovLs is estimated by counting when
RCovLs(X,Y)k > CovLs(X,Y). The Pvalue of the test then can be
estimated following Equation (11).

Pvalue =
N>CovLs

k
(11)

Empirical assessment of α-risk for the CovLs test
To empirically assess the α-risk of the Procrustes test based on the
randomisations realized during the estimation of RCovLs(X,Y), the
distribution of Pvalue under H0 was compared to a uniform distribution
between 0 and 1 (U(0, 1)). To estimate the empirical distribution, k =

1000 pairs of n× p random matrices with n = 20 and p ∈ {10, 20, 50}
were simulated under the null hypothesis of independence. Significante
of the Procrustes correlation between those matrices was tested using
the three approaches: our proposed test (CovLs.test) ; the protest
method of the vegan R package ; the procuste.rtest method of
the ADE4 R package. Conformance of the distribution of each set of k
Pvalue to U(0, 1) was assessed using the Cramer-Von Mises test (Csörgő
and Faraway, 1996) implemented in the cvm.test function of the R
package goftest.

Empirical power assessment for theCovLs test
To evaluate the relative the power of the three tests described above,
pairs of two random matrices were produced for various p ∈
{10, 20, 50, 100}, n ∈ {10, 15, 20, 25} and two levels of shared
variations R2 ∈ {0.05, 0.1}. For each combination of parameters,
k = 1000 simulations were run. Each test were estimated based on 1000
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Fig. 2. Susceptibility to overfitting for various correlation coefficients. A) Both simulated
data sets are matrices of size (n × p) with p > 1. B) Correlated data sets are vectors
(p = 1) with a various number of individuals n (vector length). For both A & B, 100
simulations were run for each combination of parameters.

randomizations for the CovLs test, or 1000 permutations for protest
and procuste.rtest.

4 Results

4.1 Empirical assessment of RCovLs(X,Y)rCovls(X,Y)

Two main parameters can influence the Monte Carlo estimation of
RCovLs(X,Y) : the distribution used to generate the random matrices,
andk the number of random matrix pair. Two very different distribution are
tested to regenerate the random matrices, the normal and the exponential
distributions. The normal distribution is symmetric where the exponential
is unsymmetrical with a high probability for small values and a long tail of
large ones. Despite the use of these contrasted distributions, estimates
of RCovLs(X,Y) and of σ(RCovLs(X,Y)) were identical if we
assumed the normal distribution of the RCovLs(X,Y) estimator and
a 0.95 confidence interval of RCovLs(X,Y) ± 2σ(RCovLs(X,Y))

(Table 1).

4.2 Relative susceptibility of IRLs(X,Y )IRLs(X,Y) to
overfitting

RLs, like RV and dCor, is susceptible to overfitting which increases
whenn decreases, and p or q increase. BecauseRV is more comparable to
R2, whenRLs and dCor are more comparable toR,RV values increase
more slowly thanRLs and dCor values with p (Figure 2A). As expected
IRLs values for non-correlated matrices are close to 0 regardless of p
(Figure 2A). The same correction of the overfitting effect can be observed
for vectors (Figure 2B)

4.3 Evaluating the shared variation

Between two matrices
For two matrices, our proposed corrected version of RLs2 (IRLs2)
provided a good estimate of the shared variation and was robust to the
phenomenon of over-fitting (Figure 3). Only a small over estimation was
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Fig. 3. Shared variation (R2) between two matrices has measured using both the corrected
(IRLs) and the original (RLs) versions of the Procrustean correlation coefficient. A
gradient of R2 was simulated for two population sizes (n ∈ {10, 25}) and two numbers
of descriptive variables (p ∈ {10, 100}). The distribution of differences between the
observed and the simulated shared variation is plotted for each condition. The black dashed
line corresponds to a perfect match where measured R2 equals the simulated one.

observed when p = 10 for the lowest values of the simulated shared
variations (≤ 0.4).

Between two vectors
Vectors can be considered as a single column matrix, and the efficiency
of IRLs2 to estimate shared variation between matrices can also be
used to estimate shared variation between two vectors. Other formulas
have been already proposed to better estimate shared variation between
vectors in the context of linear models. Among them the one presented
in Equation 9, is the most often used and is the one implemented in
R linear model summary function. On simulated data, IRLs2 performs
better than the simple R2 and its modified version R2

adj commonly used
(Figure 4). Whatever the estimator the bias decrease with the simulated
shared variation. Nevertheless for every tested cases the median of the
bias observed is smaller than with both other estimators, even if classical
estimators well perfom for large values of shared variation.

Partial coefficient of determination
The simulated correlation network between the four matrices
A, B, C, D induced moreover the direct simulated correlation a network
of indirect correlation and therefore shared variances (Figure 1). In such
system, the interest of partial correlation coefficients and their associated
partial determination coefficients is to measure correlation between a pair
of variable without accounting for the part of that correlation which is
explained by other variables, hence extracting the pure correlation between
these two matrices. From Figure 1, the expected partial shared variation
between A and B is 480/(200 + 480) = 0.706; between B and
C, 64/(480 + 120) = 0.107; and between C and D 120/800 =

0.150. All other partial coefficient are expected to be equal to 0.
The effect of the correction introduced in IRLs is clearly weaker and
on the partial coefficient of determination (Figure 5) than on the full
coefficient of determination (Figure 3). The spurious random correlations,
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Table 2.Pvalues of the Cramer-Von Mises test of conformity of the distribution
of Pvalues correlation test to U(0, 1) under the null hypothesis.

Cramer-Von Mises p.value
p CovLs test protest procuste.rtest

10 0.203 0.250 0.194
20 0.682 0.682 0.687
50 0.560 0.532 0.551

constituting the over-fitting effect, is distributed over all the pair of matrices
A, B, C, D.

4.4 pvaluePValue distribution under null hyothesis

As expected, Pvalues of the CovLs test based on the estimation of
RCovLs(X,Y ) are uniformely distributed under H0. whatever the p
tested (Table 2). This ensure that the probability of a Pvalue 6 α-risk is
equal toα-risk. MoreoverPvalues of theCovLs test are strongly linerarly
correlated with those of both the other tests (R2 = 0.996 andR2 = 0.996

respectively for the correlation with vegan::protest and ade4::-
procuste.rtest Pvalues). The slopes of the corresponding linear
models are respectively 0.998 and 0.999.

Table 3. Power estimation of the Procrustes tests for two low level of shared
variations 5% and 10%.

R2 5% 10%
p 10 20 50 100 10 20 50 100
n power = 1− β-risk

Covls.test

10 0.49 0.45 0.40 0.45 0.76 0.68 0.70 0.68
15 0.88 0.80 0.75 0.75 0.99 0.98 0.96 0.95
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.98 1.00 1.00 1.00 1.00

protest

10 0.50 0.45 0.40 0.45 0.77 0.70 0.70 0.68
15 0.88 0.80 0.75 0.75 0.99 0.98 0.96 0.95
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

procuste.rtest

10 0.50 0.45 0.41 0.45 0.76 0.69 0.70 0.68
15 0.88 0.80 0.74 0.75 0.99 0.98 0.96 0.96
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

4.5 Power of the test based on randomisation

Power of the CovLs test based on the estimation of RCovLs(X,Y )

is equivalent of the power estimated for both vegan::protest and
ade4::procuste.rtest tests (Table 3). As for the two other
tests, power decreases when the number of variable (p or q) increases,
and increase with the number of individuals and the shared variation.
The advantage of the test based on the Monte-Carlo estimation of
RCovLs(X,Y ) is to remove the need of running a supplementary set
of permutations when IRLs is computed.

5 Discussion
Correcting the over-adjustment effect on metrics assessing the relationship
between high dimension datasets has been a constant effort over the
past decades. Therefore, IRLs can be considered as a continuation of
the extension of the toolbox available to biologists for analyzing their
omics data. The effect of the proposed correction on the classical RLs

coefficient is as strong as the other ones previously proposed for other
correlation coefficients measuring relationship between vector data (see
Figure 3, e.g. Smilde et al., 2009; SzéKely and Rizzo, 2013). When
applied to univariate data, RLs is equal to the absolute value of the Pearson
correlation coefficient, hence, and despite it is not the initial aim of that
coefficient, IRLs can also be used to evaluate correlation between two
univariate datasets. Using IRLs for such data sets is correcting for spurious
correlations when the number of individual is small more efficiently than
classical correction (see Figure 4, Theil, 1958).

The main advantage of IRLs over other matrix correlation coefficients
is that it allows for estimating shared variation between two matrices
according to the classical definition of variance partitioning used with
linear models. This opens the opportunity to develop linear models to
explain the variation of a high dimension dataset by a set of other high
dimension data matrices.

The second advantage of IRLs is that its definition implies that the
variance/co-variance matrix of a set of matrices is positive-definite. That
allows for estimating partial correlation coefficients matrix by inverting the
variance/co-variance matrix. The effect of the correction is less strong on
such partial coefficients than on full correlation, but the partial coefficients
that should theoretically be estimated to zero seem to be better identified
after the correction.
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6 Conclusion
A common approach to estimate strengh of the relationship between two
variables is to estimate the part of shared variation. This single value
ranging from zero to one is easy to interpret. Such value can also be
computed between two sets of variable, but the estimation is more than
for simple vector data subject to over estimation because the over-fitting
phenomena which is amplified for high dimensional data. With IRLs

and its squared value, we propose an easy to compute correlation and
determination coefficient far less biased than the original Procrustean
correlation coefficient. Every needed function to estimate the proposed
modified version of these coefficients are included in a R package ProcMod
available for download from the Comprehensive R Archive Network
(CRAN).
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Appendix

A Notations
x (vector) bold lowercase.
X (matrix) bold uppercase.
i = 1, ..., n object index.
j = 1, ..., p variable index.
k iteration index.
X′ The transpose of X.
XY Matrix multiplication of X and Y.
Diag(X) A column matrix composed of the diagonal

elements of X.
X1/2 Matrix square root of X.
Trace(X) The trace of X.


