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1 Introduction
Multidimensional data and even high-dimensional data, where the
number of variables describing each sample is far larger than the
sample count are now regularly produced in functional genomics (e.g.
transcriptomics, proteomics or metabolomics) and molecular ecology (e.g.
DNA metabarcoding). Using various techniques, the same sample set can
be described by several multidimensional data sets, each one describing a
different aspect of the samples. This invites using data analysis methods
able to evaluate mutual information shared by these different descriptions.
Correlative approaches can be a first and simple way to decipher pairwise
relationships of those data sets.

Since a long time ago, several coefficients have been proposed to
measure correlation between two matrices (for a comprehensive review
see Ramsay et al., 1984). But when applied to high-dimensional data,
they suffer from the over-fitting effect leading them to estimate a high
correlation even for unrelated data sets. Modified versions of some of
these matrix correlation coefficients have been already proposed to tackle
this problem. The RV2 coefficient (Smilde et al., 2009) is correcting
the original RV coefficient (Escoufier, 1973) for over-fitting. Similarly,
a modified version of the distance correlation coefficient dCor (Székely
et al., 2007) has been proposed by SzéKely and Rizzo (2013). dCor has the
advantage over the other correlation factors for not considering only linear
relationships. Here we will focus on the Procrustes correlation coeficient

RLs proposed by Lingoes and Schönemann (1974) and by Gower (1971).
Let the define Trace, a function summing the diagonal elements of a
matrix. For a n × p real matrixX and anothet a n × q real matrix Y
defining respectively two sets of p and q centered variables caracterizingn
individuals, we define CovLs(X,Y ) an analog of covariance applicable
to vectorial data following Equation (1)

CovLs(X,Y ) =
Trace((XX′Y Y ′)1/2)

n− 1
(1)

and VarLs(X) as CovLs(X,X). RLs can then be expressed as
follow in Equation (2).

RLs(X,Y ) =
CovLs(X,Y )√

VarLs(X) VarLs(Y )
(2)

Procrustean analyses have been proposed as a good alternative to
Mantel’s statistics for analyzing ecological data, and more generally
for every high-dimensional data sets (Peres-Neto and Jackson, 2001).
Among the advantages of Rls, its similarity with the Pearson
correlation coefficient R (Bravais, 1844) has to be noticed. Considering
CovLs(X,Y ) and VarLs(X) respectively corresponding to the
covariance of two matrices and the variance of a matrix, Equation (2)
highlight the analogy between both the correlation coefficients. Moreover,
when p = 1 and q = 1, RLs = |R|.
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2 Approach
RLs is part of the procruste framework that aims to superimpose a set
of points with respect to another through three operations: a translation,
a rotation and a scaling. The optimal transfert matrix RotX→Y can be
estimated from the singular value decomposition (SVD) of the covariance
matrix X′Y . SVD factorize any matrix as the product of three matrices
(Equation 3).

X′Y = UΣV ′ (3)

U and V are two rotation matrices allowing to compute the transfer
matrix to superimpose X on Y or reciproquly Y on X . All the elements
of Σ except its diagonal are equal to zero. The diagonal elements are the
singular values. Singular values are the extention of the eigenvalues to
non square matrices. CovLs(X,Y ) can also be computed from singular
values (Equation 4).

CovLs(X,Y ) =
Trace(Σ)

n− 1
(4)

This expression illustrates that actuallyCovLs(X,Y ) is the variance
of the projections of X on Y or of the reciproque projection.
ThereforeCovLs(X,Y ) andRls(X,Y ) are always positive and rotation
independante. Here we propose to partitionate this variance in two
components. A fisrt one corresponting to the actual shared information
betweenX and Y , and a second part that corresponds to that two random
matrices of same structure than X and Y are sharing. Two methods
are proposed to estimate RCovLs(X,Y ) the mean the random part of
CovLs(X,Y ). ICovLs(X,Y ) the informative part of CovLs(X,Y ) is
estimated using Equation (5)

ICovLs(X,Y ) = Max

CovLs(X,Y )− RCovLs(X,Y )

0
(5)

Similarly the informative counter-part of V arLs(X) is defined as
IVarLs(X) = ICovLs(X,X).

3 Methods

3.1 Monte-Carlo estimation of RCovLs(X,Y )

For every values of p and q including 1, RCovLs(X,Y ) can be estimated
using a serie of k random matrices RX = {RX1, RX2, ..., RXk} and
RY = {RY1, RY2, ..., RYk} where each RXi and RYi have the same
structure respectively thanX and Y in term of number of columns and of
standard deviation of these columns.

RCovLs(X,Y ) =
Σk

i=1 CovLs(RXi, RYi)

k
(6)

Even when X = Y to estimate V arLs(X), RCovLs(X,Y ) is
estimated with two independent sets of random matrixRX andRY , both
having the same structure than X .

3.2 Empirical assessment of RCovLs(X,Y ) estimation

3.3 Estimation of IRLs(X,Y )

We proposed to define IRLs(X,Y ) the informative Procruste correlation
coefficient as follow.

IRLs(X,Y ) =
ICovLs(X,Y )

IVarLs(X) IVarLs(Y )
(7)

Like (X,Y ) IRLs(X,Y ) ∈ [0; 1] with the 0 value corresponding
to not correlation and the maximum value 1 reached for two strictly
homothetic data sets.

3.4 Testing significance of IRLs(X,Y )

Significance of IRLs(X,Y ) can be tested using permutation test as
defined in Jackson (1995) or Peres-Neto and Jackson (2001) and
implemented respectively in theprotestmethod of the vegan R package
(Dixon, 2003) or the procuste.rtestmethod of the ADE4 R package
Dray and Dufour (2007).

It is also possible to take advantage of the Monte-Carlo estimation of
RCovLs(X,Y ) to test that ICovLs(X,Y ) and therefore IRLs(X,Y )

are greater than expected under random hypothesis. Let counting over
the k rendomization when RCovLs(X,Y )k greater than CovLs(X,Y )

name this countsN>CovLs. Pvalue of the test can be estimated following
Equation (8).

Pvalue =
N>CovLs

k
(8)

3.5 Simulating data for testing sensibility to overfitting

To test sensibility to overfitting correlations were mesured between two
random matrices of same dimensions. Each matrix is n × p with n =

20 and p ∈ [2, 50]. Each p variables are drawn from a centered and
reduced normal distribution N (0, 1). Eight correlation coefficients have
been tested: RLs the original procruste coefficient , IRLs this work, RV the
original R for vector data (Robert and Escoufier, 1976), RVadjMaye, RV2
and RVadjGhaziri three modified versions of RV (El Ghaziri and Qannari,
2015; Mayer et al., 2011; Smilde et al., 2009), dCor the original distance
correlation coefficient (Székely et al., 2007) and dCor_ttest a modified
version of dCor not sensible to overfitting (SzéKely and Rizzo, 2013). For
each p value, 100 simulations were run. Computation of IRLs is estimated
with 100 randomizations.

For p = 1 random vectors with n ∈ [3, 25] are generated. As above
data are drawn from N (0, 1) and k = 100 simulations are run for each
n. The original Pearson correlation coefficientR and the modified version
IR are used to estimate correlation between both vectors.

3.6 Empirical assessment of α-risk for the CovLs test

To assess empirically the α-risk of the procruste test based on the
randomisations realized during the estimation of RCovLs(X,Y ),
distribution ofPvalue under theH0 is comparaed to a uniform distribution
between 0 and 1 (U(0, 1)). To estimate such empirical distribution,
k = 1000 pairs of n × p random matrices with n = 20 and p ∈
{10, 20, 50} are simulated under the null hypothesis of independancy.
Procruste correlation between whose matrices is tested based on three tests.
Our proposed test (CovLs.test), the protest method of the vegan R
package and the procuste.rtest method of the ADE4 R package.
Conformance of the distribution of each set of k Pvalue to U(0, 1) is
assessed using the Cramer-Von Mises test (Csörgő and Faraway, 1996)
implemented in the cvm.test function of the R package goftest.

3.7 Empirical power assessment for the CovLs test

To evaluate relative power of the three considered tests, pairs of to
random matrices were produced for various p ∈ {10, 20, 50, 100}, n ∈
{10, 15, 20, 25} and two levels of shared variations R2 ∈ {0.05, 0.1}.
For each combination of parameters, k = 1000 simulations are run. Each
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Fig. 1. A) Sensibility to overfitting for various correraltion coefficients. (A) Both simulated
data sets are matrices of size (n × p) with p > 1. B) Correlated data sets are vectors
(p = 1) with a various number of individuals n (vector length). A & B) 100 simulations
are run for each combination of parameters

test are estimated based on 1000 randomizations for the CovLs test, or
permutations for protest and procuste.rtest.

3.8 Empirical assessment of R2

4 Results

4.1 Relative sensibility of IRLs(X,Y ) to overfitting

RLs like RV and dCor is sensible to overfitting which increase when
n decrease, and p or q increase. Because RV is more comparable to R2

when RLs and dCor are more comparable to R, RV values increase
more slowly than RLs and dCor values with p (Figure 1A). Because
of its definition IRLs values for non-correlated matrices are close to 0

whatever p (Figure 1A).

4.2 pvalue distribution under null hyothesis

As expected, Pvalues of the CovLs test based on the estimation of
RCovLs(X,Y ) are uniformely distributed under H0. whatever the p
tested (Table 1). This ensure that the probability of a Pvalue 6 α-risk is
equal toα-risk. MoreoverPvalues of theCovLs test are strongly linerarly
correlated with those of both the other tests (R2 = 0.996 and R2 =

0.996 respectively for the correlation with vegan::protest and
ade4::procuste.rtest Pvalues). The slopes of the corresponding
linear models are respectively 0.998 and 0.999.

4.3 Power of the test based on randomisation

Power of the CovLs test based on the estimation of RCovLs(X,Y )

is equivalent of the power estimated for both vegan::protest and
ade4::procuste.rtest tests (Table 2). As for the two other
tests, power decreases when the number of variable (p or q) increases
and increase with the number of individuals and the shared variation.

Table 1.Pvalues of the Cramer-Von Mises test of conformity of the distribution
of Pvalues correlation test to U(0, 1) under the null hypothesis.

Cramer-Von Mises p.value
p CovLs test protest procuste.rtest

10 0.323 0.395 0.348
20 0.861 0.769 0.706
50 0.628 0.783 0.680

Table 2. Power estimation of the procruste tests for two low level of shared
variations 5% and 10%.

R2 5% 10%
p 10 20 50 100 10 20 50 100
n power = 1− β-risk

Covls.test

10 0.49 0.45 0.40 0.45 0.76 0.68 0.70 0.68
15 0.88 0.80 0.75 0.75 0.99 0.98 0.96 0.95
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.98 1.00 1.00 1.00 1.00

protest

10 0.50 0.45 0.40 0.45 0.77 0.70 0.70 0.68
15 0.88 0.80 0.75 0.75 0.99 0.98 0.96 0.95
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

procuste.rtest

10 0.50 0.45 0.41 0.45 0.76 0.69 0.70 0.68
15 0.88 0.80 0.74 0.75 0.99 0.98 0.96 0.96
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

The advantage of the test based on the Monte-Carlo estimation of
RCovLs(X,Y ) is to remove the need of running a supplementary set
of permutations when IRLs iscomputed.

4.4 Evaluating the shared variation

RLs can be considered for matrices as a strict equivalent of Pearson’s R for
vectors. Therefore its squared value is an estimator of the shared variation
between two matrices. But because of over-fitting the estimation is over-
estimated. The proposed corrected vection (IRLs) of that coefficient is able
to provide a good estimate of the shared variation and is perfectly robust
to the over-fitting phenomenon (Figure 2). Only a small over evalution is
observable for the low values of simulated shared variation.

5 Discussion
Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text
Text Text Text Text Text Text. Figure 2 shows that the above method Text
Text Text Text Text Text Text Text Text Text Text Text. Bauer et al., 2007
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Fig. 2. Shared variation (R2) between two matrices is mesured with both the corrected (IRLs) and the original (RLs) versions of the procrustean correlation coefficient. A gradiant of R2

is simulated for two population sizes (n ∈ {10, 24}) and two numbers of descriptive variables (p ∈ {10, 100}). The black dashed line corresponds to a perfect match where measured
R2 equals the simulated one.
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