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Abstract

Motivation: Molecular biology and ecology produce many high di-
mension data. Estimating correlation and shared variation between such
data sets is an important step to distangle relationships among differents
elements of a biological system. Unfortunatly when using classical mea-
sures, because of the high dimension of the data, high correlation can be
falsly infered.
Results: Here we propose a corrected version of the Procrustean corre-
lation coeficient that is not sensible to the high dimension of the data.
This allows for a correct estimation of the shared variation between two
data sets and of the partial correlation coefficient between a set of matrix
data.
Availability: The proposed corrected coeficients are implemented in
the ProcMod R package available on https://git.metabarcoding.org/

lecasofts/ProcMod

Contact: eric.coissac@metabarcoding.org

1 Introduction1

Multidimensional data and even high-dimensional data, where the num-2

ber of variables describing each sample is far larger than the sample count,3

are now regularly produced in functional genomics (e.g. transcriptomics,4

proteomics or metabolomics) and molecular ecology (e.g. DNA metabar-5

coding). Using various techniques, the same sample set can be described6

by several multidimensional data sets, each of them describing a different7

facet of the samples. This invites using data analysis methods able to8

evaluate mutual information shared by these different descriptions. Cor-9

relative approaches can be a first and simple way to decipher pairwise10

relationships of those data sets.11

For a long time, several coefficients have been proposed to measure12

correlation between two matrices (for a comprehensive review see Ramsay13
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et al., 1984). But when applied to high-dimensional data, they suffer14

from the over-fitting effect leading them to estimate a high correlation15

even for unrelated data sets. Modified versions of some of these matrix16

correlation coefficients have been already proposed to tackle this problem.17

The RV2 coefficient (Smilde et al., 2009) is correcting the original RV18

coefficient (Escoufier, 1973) for over-fitting. Similarly, a modified version19

of the distance correlation coefficient dCor (Székely et al., 2007) has been20

proposed by SzéKely and Rizzo (2013). dCor has the advantage over21

the other correlation factors for not considering only linear relationships.22

Here we will focus on the Procrustes correlation coefficient RLs proposed23

by Lingoes and Schönemann (1974) and by Gower (1971). Define Trace,24

a function summing the diagonal elements of a matrix. For an n × p real25

matrix X and a second n × q real matrix Y defining respectively two26

sets of p and q centered variables caracterizing n individuals, we define27

CovLs(X,Y) an analog of covariance applicable to vectorial data following28

Equation (1)29

CovLs(X,Y) =
Trace((XX′YY′)1/2)

n− 1
(1)

and VarLs(X) as CovLs(X,X). RLs can then be expressed as follow30

in Equation (2).31

RLs(X,Y) =
CovLs(X,Y)√

VarLs(X) VarLs(Y)
(2)

Among the advantages of RLs, its similarity with Pearson’s correlation32

coefficient R (Bravais, 1844) has to be noticed. Considering CovLs(X,Y)33

and VarLs(X), respectively corresponding to the covariance of two ma-34

trices and the variance of a matrix, Equation (2) highlight the analogy35

between both the correlation coefficients. Besides, when p = 1 and q =36

1, RLs = |R|. When squared RLs is an estimate, like the squared Pear-37

son’s R, of the amount of variation shared between the two datasets. This38

property allows for developing variance analyzing of matrix data sets.39

Moreover, Procrustean analyses have been proposed as a good alter-40

native to Mantel’s statistics for analyzing ecological data summarized by41

distance matrices (Peres-Neto and Jackson, 2001). In such analyze dis-42

tance matrices are projected into an orthogonal space using metric or43

non metric multidimensional scaling according to the geometrical proper-44

ties of the used distances. Correlations are then estimated between these45

projections.46

2 Approach47

RLs is part of the procruste framework that aims to superimpose a set48

of points with respect to another through three operations: a translation,49

a rotation and a scaling. The optimal transfert matrix RotX→Y can be50

estimated from the singular value decomposition (SVD) of the covariance51

matrix X ′Y . SVD factorize any matrix as the product of three matrices52
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(Equation 3).53

X′Y = UΣV′ (3)

U and V are two rotation matrices allowing to compute the transfer54

matrix to superimpose X on Y or reciproquely Y on X. All the elements55

of Σ except its diagonal are equal to zero. The diagonal elements are the56

singular values. Singular values are the extention of the eigenvalues to57

non square matrices. CovLs(X,Y) can also be computed from singular58

values (Equation 4).59

CovLs(X,Y) =
Trace(Σ)

n− 1
(4)

This expression illustrates that actually CovLs(X,Y) is the variance60

of the projections of X on Y or of the reciproque projection. Therefore61

CovLs(X,Y) and RLs(X,Y) are always positive and rotation indepen-62

dante. Here we propose to partitionate this variance in two components.63

A fisrt one corresponding to the actual shared information between X and64

Y, and a second part that corresponds to what two random matrices of65

same structure than X and Y are sharing. This second part is estimated66

as RCovLs(X,Y) the mean of such random correlation. ICovLs(X,Y),67

the informative part of CovLs(X,Y), is computed using Equation (5).68

ICovLs(X,Y) = Max

{
CovLs(X,Y)− RCovLs(X,Y)

0
(5)

Similarly the informative counter-part of VarLs(X) is defined as69

IVarLs(X) = ICovLs(X,X), and IRLs(X,Y) the informative Procruste70

correlation coefficient as follow.71

IRLs(X,Y) =
ICovLs(X,Y)

IVarLs(X) IVarLs(Y)
(6)

Like RLs(X,Y), IRLs(X,Y) ∈ [0; 1] with the 0 value corresponding72

to no correlation and the maximum value 1 reached for two strictly ho-73

mothetic data sets.74

The corollary of ICovLs(X,Y) and IVarLs(X) definitions is that75

ICovLs(X,Y) > 0 and IVarLs(X) > 0. Therefore for M =76

{M1,M2, ...,Mk} a set of k matrices with the same number of row, the77

informative covariance matrix C defined as Ci,j = ICovLs(Mi,Mj) is78

definite positive and symmetrical. This allows for defining the precision79

matrix P = C−1 and the related partial correlation coefficent matrix80

IRLspartial using Equation (7)81

IRLspartial(Mi,Mj) =
Pi,j√
Pi,iPj,j

(7)
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3 Methods82

3.1 Monte-Carlo estimation of RCovLs(X,Y)83

For every values of p and q including 1, RCovLs(X,Y) can be estimated84

using a serie of k random matrices RX = {RX1,RX2, ...,RXk} and85

RY = {RY1,RY2, ...,RYk} where each RXi and RYi have the same86

structure respectively than X and Y in term of number of columns and87

of covariance matrix of these columns.88

RCovLs(X,Y) =
Σk

i=1 CovLs(RXi,RYi)

k
(8)

Even when X = Y to estimate IVarLs(X), RCovLs(X,X) is estimated89

with two independent sets of random matrix RX and RY , both having90

the same structure than X.91

Empirical assessment of RCovLs(X,Y)92

For two random vectors x and y of length n, the average coefficient of93

determination is R2 = 1/(n − 1). This value is independent of the dis-94

tribution of the x and y values, but what about the independence of95

RCovLs(X,Y) to the distributions of X and Y. To test this independance96

and to assess the reasonnable randomization effort needed to estimate97

RCovLs(X,Y), this value is estimated for four matrices K, L, M, N of98

n = 20 rows and respectively 10, 20, 50, 100 columns. Values of the four99

matrices are drawn from a normal or an exponential distribution, and100

k ∈ {10, 100, 1000} randomizations are tested to estimate RCovLs(X,Y)101

and the respective standard deviation σ(RCovLs(X,Y)). The VarLs of102

the generated matrices is equal to 1 therefore the estimated CovLs are103

equals to RLs.104

3.2 Simulating data for testing sensibility to over-105

fitting106

To test sensibility to overfitting correlations were mesured between two107

random matrices of same dimensions. Each matrix is n×p with n = 20 and108

p ∈ [2, 50]. Each p variables are drawn from a centered and reduced nor-109

mal distribution N (0, 1). Eight correlation coefficients have been tested:110

RLs the original procruste coefficient , IRLs this work, RV the original111

R for vector data (Robert and Escoufier, 1976), RV adjMaye, RV 2 and112

RV adjGhaziri three modified versions of RV (El Ghaziri and Qannari,113

2015; Mayer et al., 2011; Smilde et al., 2009), dCor the original distance114

correlation coefficient (Székely et al., 2007) and dCor ttest a modified ver-115

sion of dCor not sensible to overfitting (SzéKely and Rizzo, 2013). For116

each p value, 100 simulations were run. Computation of IRLs is estimated117

with 100 randomizations.118

For p = 1 random vectors with n ∈ [3, 25] are generated. As above119

data are drawn from N (0, 1) and k = 100 simulations are run for each n.120

The original Pearson correlation coefficient R and the modified version IR121

are used to estimate correlation between both vectors.122
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3.3 Empirical assessment of the coefficient of de-123

termination124

The coefficient of determination (R2) represente the part of shared varia-125

tion between two variables. RLs2 keeps the same meaning when applied126

to two matrices. But because of over-fitting RLs and therefore RLs2 are127

over-estimated.128

Between two matrices129

To test how the IRLs version of the coefficient of determination IRLs2 can130

perform to evaluate the shared variation, pairs of random matrices were131

produced for two values of p ∈ {10, 100} and n ∈ {10, 25}, and for several132

levels of shared variations ranging between 0.1 and 1 by step of 0.1. For133

each combination of parameters, k = 100 simulations are run, and both134

RLs2 and IRLs2 are estimated using 100 randomizations.135

Between two vectors136

Coefficient of determination between two vectors also suffers from over-137

estimation when n the number of considered points is small. On average138

for two random vectors of size n, R2 = 1/(n − 1). This random part of139

the shared variation inflates the observed shared variation even for not140

random vectors. In the context of multiple linear regression, Theil et al.141

(1958) proposed an adjusted version of the coefficient of determination142

(Equation 9) correcting for both the effect of the number of vector con-143

sidered (p) and of the vector size (n).144

R2
adj = 1− (1−R2)

n− 1

n− p− 1
(9)

To evaluate the strength of that over-estimation and the relative effect145

of the correction proposed by Theil et al. (1958) and by IRLs, pairs of146

random vectors were produced for n ∈ {10, 25}, and for several levels147

of shared variations ranging between 0.1 and 1 by step of 0.1. For each148

combination of parameters, k = 100 simulations are run, and R2, R2
adj149

and IRLs2 are estimated using 100 randomizations.150

Partial determination coefficients151

To evaluate the capacity of partial determination coefficient IRLs2partial152

to distangle nested correlations, four matrices A, B, C, D of size n ×153

p = 20 × 200 are generated according to the schema: A shares 80% of154

variation with B, that shares 40% of variation with C, sharing 20% of155

variation with D. These direct correlations induce indirect ones spreading156

the total variation among each pair of matricies according to Figure 1.157

The simulation is repeadted 100 times, for every simutation IRLs2partial158

and RLs2partial are estimated for each pair of matrices.159
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Figure 1: Theoritical distribution of the shared variation between the four ma-
trices A, B, C, D, expressed in permille.
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3.4 Testing the significance of IRLs(X,Y)160

The significance of IRLs(X,Y) can be tested using permutation test as161

defined in Jackson (1995) or Peres-Neto and Jackson (2001) and im-162

plemented respectively in the protest method of the vegan R package163

(Dixon, 2003) or the procuste.rtest method of the ADE4 R package164

Dray and Dufour (2007).165

It is also possible to take advantage of the Monte-Carlo estimation of166

RCovLs(X,Y) to test that ICovLs(X,Y) and therefore IRLs(X,Y) are167

greater than expected under random hypothesis. Let us count over the k168

randomization when RCovLs(X,Y)k greater than CovLs(X,Y) and name169

this counts N>CovLs. The Pvalue of the test can be estimated following170

Equation (10).171

Pvalue =
N>CovLs

k
(10)

Empirical assessment of α-risk for the CovLs test172

To assess empirically the α-risk of the procruste test based on the ran-173

domisations realized during the estimation of RCovLs(X,Y), the distri-174

bution of Pvalue under H0 is compared to a uniform distribution between175

0 and 1 (U(0, 1)). To estimate such an empirical distribution, k = 1000176

pairs of n × p random matrices with n = 20 and p ∈ {10, 20, 50} are177

simulated under the null hypothesis of independence. Procruste correla-178

tion between those matrices is tested based on three tests. Our proposed179

test (CovLs.test), the protest method of the vegan R package and the180

procuste.rtest method of the ADE4 R package. Conformance of the181

distribution of each set of k Pvalue to U(0, 1) is assessed using the Cramer-182

Von Mises test (Csörgő and Faraway, 1996) implemented in the cvm.test183

function of the R package goftest.184

Empirical power assessment for the CovLs test185

To evaluate relative the power of the three considered tests, pairs of to186

random matrices were produced for various p ∈ {10, 20, 50, 100}, n ∈187

{10, 15, 20, 25} and two levels of shared variations R2 ∈ {0.05, 0.1}. For188

each combination of parameters, k = 1000 simulations are run. Each189

test are estimated based on 1000 randomizations for the CovLs test, or190

permutations for protest and procuste.rtest.191

4 Results192

4.1 Empirical assessment of RCovLs(X,Y)193

Two main parameters can influence the Monte Carlo estimation of194

RCovLs(X,Y) : the distribution used to generate the random matrices195

and k the number of random matrix pair. Two very different distribution196

are tested to regenerate the random matrices, the normal and the expo-197

nential distributions. The first one is symmetric where the second is not198
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Table 1: Estimation of RCovLs(X,Y) according to the number of random ma-
trices (k) aligned.

normal exponential
p k mean sd mean sd

10
10 0.5746 1.3687× 10−2 0.5705 1.1714× 10−2

100 0.5824 3.6425× 10−3 0.5794 3.6452× 10−3

1000 0.5806 1.1564× 10−3 0.5801 1.1515× 10−3

20
10 0.7682 4.5568× 10−3 0.7729 7.4071× 10−3

100 0.7645 2.1681× 10−3 0.7695 2.0006× 10−3

1000 0.7658 6.8923× 10−4 0.7671 6.6033× 10−4

50
10 0.9131 3.4659× 10−3 0.9102 2.6647× 10−3

100 0.9088 8.9318× 10−4 0.9086 7.7424× 10−4

1000 0.9086 2.8590× 10−4 0.9091 2.8450× 10−4

100
10 0.9557 1.2939× 10−3 0.9532 1.7316× 10−3

100 0.9542 4.7043× 10−4 0.9547 4.6869× 10−4

1000 0.9544 1.4547× 10−4 0.9546 1.4249× 10−4

with a high probability for small values and a long tail of large ones. De-199

spite the use of these contrasted distributions, estimates of RCovLs(X,Y)200

and of σ(RCovLs(X,Y)) are identical if we assume the normal distribu-201

tion of the RCovLs(X,Y) estimator and a 0.95 confidence interval of202

RCovLs(X,Y)± 2σ(RCovLs(X,Y)) (Table 1).203

4.2 Relative sensibility of IRLs(X, Y ) to overfit-204

ting205

RLs, like RV and dCor, is sensible to overfitting which increase when206

n decrease, and p or q increase. Because RV is more comparable to R2
207

when RLs and dCor are more comparable to R, RV values increase more208

slowly than RLs and dCor values with p (Figure 2A). Because of its209

definition IRLs values for non-correlated matrices are close to 0 whatever210

p (Figure 2A).211

4.3 Evaluating the shared variation212

Between two matrices213

RLs can be considered for matrices as a strict equivalent of Pearson’s R for214

vectors. Therefore its squared value is an estimator of the shared variation215

between two matrices. But because of over-fitting the estimation is over-216

estimated. The proposed corrected vection (IRLs) of that coefficient is217

able to provide a good estimate of the shared variation and is perfectly218

robust to the over-fitting phenomenon (Figure 3). Only a small over219

evalution is observable for the low values of simulated shared variation.220
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Both simulated data sets are matrices of size (n× p) with p > 1. B) Correlated
data sets are vectors (p = 1) with a various number of individuals n (vector
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Figure 3: Shared variation (R2) between two matrices is mesured using both the
corrected (IRLs) and the original (RLs) versions of the procrustean correlation
coefficient. A gradiant of R2 is simulated for two population sizes (n ∈ {10, 25})
and two numbers of descriptive variables (p ∈ {10, 100}). The distribution of
differences between the observed and the simulated shared variation is ploted
for each condition. The black dashed line corresponds to a perfect match where
measured R2 equals the simulated one.

Between two vectors221

Vectors can be considered as a single column matrix, and the efficiency222

of IRLs2 to estimate shared variation between matrices can also be used223

to estimate shared variation between two vectors. Other formulas have224

been already proposed to better estimate shared variation between vec-225

tors in the context of linear models. Among them the one presented in226

Equation 9, is the most often used and is the one implemented in R linear227

model summary function. On simulated data, IRLs2 performs better than228

the simple R2 and its modified version R2
adj commonly used (Figure 4).229

Whatever the estimator the bias decrease with the simulated shared vari-230

ation. Nevertheless for every tested cases the median of the bias observed231

is smaller than with both other estimators, even if classical estimators232

well perfom for large values of shared variation.233

Partial coefficient of determination234

The simulated correlation network between the four matrices A, B, C, D235

induced moreover the direct simulated correlation a network of indirect236

correlation and therefore shared variances (Figure 1). In such system,237

the interest of partial correlation coefficients and their associated par-238

tial determination coefficients is to measure correlation between a pair239

of variable without accounting for the part of that correlation which is240

explained by other variables, hence extracting the pure correlation be-241

tween these two matrices. From Figure 1, the expected partial shared242

variation between A and B is 480/(200+480) = 0.706; between B and C,243

64/(480+120) = 0.107; and between C and D 120/800 = 0.150. All other244
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R2, its ajusted version R2

adj and (IRLs2). A gradiant of shared variation is
simulated for two vector sizes (n ∈ {10, 25}). The black dashed line corresponds
to a perfect match where measured R2 equals the simulated one.

Table 2: Pvalues of the Cramer-Von Mises test of conformity of the distribution
of Pvalues correlation test to U(0, 1) under the null hypothesis.

Cramer-Von Mises p.value
p CovLs test protest procuste.rtest

10 0.323 0.395 0.348
20 0.861 0.769 0.706
50 0.628 0.783 0.680

partial coefficient are expected to be equal to 0. The effect of the correc-245

tion introduced in IRLs is clearly weaker and on the partial coefficient246

of determination (Figure 5) than on the full coefficient of determination247

(Figure 3). The spurious random correlations, constituting the over-fitting248

effect, is distributed over all the pair of matrices A, B, C, D.249

4.4 pvalue distribution under null hyothesis250

As expected, Pvalues of the CovLs test based on the estimation of251

RCovLs(X,Y ) are uniformely distributed under H0. whatever the p252

tested (Table 2). This ensure that the probability of a Pvalue 6 α-risk253

is equal to α-risk. Moreover Pvalues of the CovLs test are strongly254

linerarly correlated with those of both the other tests (R2 = 0.996 and255

R2 = 0.996 respectively for the correlation with vegan::protest and256

ade4::procuste.rtest Pvalues). The slopes of the corresponding linear257

models are respectively 0.998 and 0.999.258

11



−0.2

−0.1

0.0

0.1

A.B B.C C.D A.C A.D B.D
Pair of matrices

bi
as

=
es

tim
at

ed
R

2
−

ex
pe

ct
ed

R
2

Method

IRLspartial

RLspartial
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estimated partial R2 using the corrected IRLspartial and not corrected RLspartial
procruste correlation coefficient.

4.5 Power of the test based on randomisation259

Power of the CovLs test based on the estimation of RCovLs(X,Y )260

is equivalent of the power estimated for both vegan::protest and261

ade4::procuste.rtest tests (Table 3). As for the two other tests, power262

decreases when the number of variable (p or q) increases, and increase263

with the number of individuals and the shared variation. The advantage264

of the test based on the Monte-Carlo estimation of RCovLs(X,Y ) is to265

remove the need of running a supplementary set of permutations when266

IRLs is computed.267

5 Discussion268

Correcting the over-adjustment effect on metrics assessing the relation-269

ship between high dimension datasets has been a constant effort over the270

past decades. Therefore, IRLs can be considered as a continuation of the271

extension of the toolbox available to biologists for analyzing their omics272

data. The effect of the proposed correction on the classical RLs coefficient273

is as strong as the other ones previously proposed for other correlation co-274

efficients measuring relationship between vector data (see Figure 3, e.g.275

Smilde et al., 2009; SzéKely and Rizzo, 2013). When applied to univariate276

data, RLs is equal to the absolute value of the Pearson correlation coeffi-277

cient, hence, and despite it is not the initial aim of that coefficient, IRLs278

can also be used to evaluate correlation between two univariate datasets.279

Using IRLs for such data sets is correcting for spurious correlations when280
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Table 3: Power estimation of the procruste tests for two low level of shared
variations 5% and 10%.

R2 5% 10%
p 10 20 50 100 10 20 50 100
n power = 1− β-risk

Covls.test

10 0.49 0.45 0.40 0.45 0.76 0.68 0.70 0.68
15 0.88 0.80 0.75 0.75 0.99 0.98 0.96 0.95
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.98 1.00 1.00 1.00 1.00

protest

10 0.50 0.45 0.40 0.45 0.77 0.70 0.70 0.68
15 0.88 0.80 0.75 0.75 0.99 0.98 0.96 0.95
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

procuste.rtest

10 0.50 0.45 0.41 0.45 0.76 0.69 0.70 0.68
15 0.88 0.80 0.74 0.75 0.99 0.98 0.96 0.96
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

the number of individual is small more efficiently than classical correction281

(see Figure 4, Theil et al., 1958).282

The main advantage of IRLs over other matrix correlation coefficients283

is that it allows for estimating shared variation between two matrices284

according to the classical definition of variance partitioning used with285

linear models. This opens the opportunity to develop linear models to286

explain the variation of a high dimension dataset by a set of other high287

dimension data matrices.288

The second advantage of IRLs is that its definition implies that the289

variance/co-variance matrix of a set of matrices is positive-definite. That290

allows for estimating partial correlation coefficients matrix by inverting291

the variance/co-variance matrix. The effect of the correction is less strong292

on such partial coefficients than on full correlation, but the partial coef-293

ficients that should theoretically be estimated to zero seem to be better294

identified after the correction.295

6 Conclusion296

A common approach to estimate strengh of the relationship between two297

variables is to estimate the part of shared variation. This single value298

ranging from zero to one is easy to interpret. Such value can also be299

computed between two sets of variable, but the estimation is more than300

for simple vector data subject to over estimation because the over-fitting301

phenomena which is amplified for high dimensional data. With IRLs and302

its squared value, we propose an easy to compute correlation and determi-303

nation coefficient far less biased than the original Procrustean correlation304

coefficient. Every needed function to estimate the proposed modified ver-305

sion of these coefficients are included in a R package ProcMod available306
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for download from the Comprehensive R Archive Network (CRAN).307
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Appendix358

A Notations359

x (vector) bold lowercase.
X (matrix) bold uppercase.
i = 1, ..., n object index.
j = 1, ..., p variable index.
k iteration index.
X′ The transpose of X.
XY Matrix multiplication of X and Y.
Diag(X) A column matrix composed of the

diagonal elements of X.
Trace(X) The trace of X.
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