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Motivation: Ecology studies can produce high dimension data. Estimating correlations

and shared variation between such data sets are an important step in disentangling the

relationships between different elements of a biological system. Unfortunately, if classi-

cal approaches are able to detect correlation estimations of shared variation between such

dataset is always overestimated.

Results: Here we propose a corrected version of the Procrustean correlation coefficient

that is robust to high dimensional data. This allows for a correct estimation of the shared

variation between two data sets.

Availability: The proposed corrected coefficient is implemented in the ProcMod R package

available on CRAN. The git repository is hosted at https://git.metabarcoding.org/lecasofts/

ProcMod
Keywords: High dimension data, Correlation, Shared variation, Procruste

2000 MSC: 62H20

1. Introduction1

Ecologists are accustomed to manipulating multidimensional datasets describing the en-2

vironment in multiple terms: climate, chemistry, species diversity, genetic variation. There-3

fore, they use appropriate statistics, such as ordination, to visualize this type of data and4
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related tests to assess the significance of the observed patterns. To test the correlation be-5

tween two multidimensional datasets, Mantel-test and Protest Multidimensional data and6

even high-dimensional data, where the number of variables describing each sample is far7

larger than the sample count, is now routinely produced in functional genomics (e.g. tran-8

scriptomics, proteomics or metabolomics) and molecular ecology (e.g.DNA metabarcoding9

and metagenomics). Using a range of techniques, the same sample set can be described by10

several multidimensional data sets, each of them describing a different facet of the samples.11

This enables data analysis methods to evaluate mutual information shared by these different12

descriptions.13

Correlative approaches are one of the simplest approaches to decipher pairwise relation-14

ships between multiple datasets . For a long time, several coefficients have been proposed to15

measure correlations between two matrices (for a comprehensive review see Ramsay et al.,16

1984). However, when applied to high-dimensional data, these approaches suffer from over-17

fitting, resulting in high estimated correlations even for unrelated data sets. The creation of18

incorrect correlations from over-fitting consequently affects the biological interpretation of19

the analysis (Chariton et al., 2010) can have downstream effects on the biological interpre-20

tation of a study. A number of modified matrix correlation coefficients have been proposed21

to address this issue. For example, the RV2 coefficient (Smilde et al., 2009) corrects for22

overfitting of the original RV coeffcient (Escoufier, 1973). Similarly, a modified version of23

the distance correlation coeffcient dCor (Székely et al., 2007) proposed by SzéKely and Rizzo24

(2013) dCor has the advantage over the other correlation factors by considering by not being25

restricted to linear relationships.26

Here we focus on the Procrustes correlation coefficient (RLs) proposed by Lingoes and27

Schönemann (1974) and by Gower (1971). Define Trace, a function summing the diagonal28

elements of a matrix. For an n ⇥ p real matrix X and a second n ⇥ q real matrix Y29

defining respectively two sets of p and q centered variables caracterizing n individuals, we30
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define CovLs(X,Y) following Equation (1)31

CovLs(X,Y) =
Trace((Y0XX0Y)1/2)

n� 1
(1)

and VarLs(X) as CovLs(X,X). RLs can then be expressed as follow in Equation (2).32

RLs(X,Y) =
CovLs(X,Y)p

VarLs(X) VarLs(Y)
(2)

Considering CovLs(X,Y) and VarLs(X), respectively corresponding to the covariance of33

two matrices and the variance of a matrix, Equation (2) highlighting the analogy between34

RLs and Pearson’s correlation coefficient (R) (Bravais, 1844). When p = 1 and q = 1, RLs =35

|R|. Like the squared Pearson’s R, the squared RLs is an estimate of the amount of variation36

shared between the two datasets.37

Procrustean analyses have been proposed as a good alternative to Mantel’s statistics38

for analyzing ecological data summarized by distance matrices (Peres-Neto and Jackson,39

2001). In Procrustean analyze, distance matrices are projected into an orthogonal space40

using metric or non metric multidimensional scaling according to the geometrical properties41

of the used distances. Correlations can then be estimated on these projections.42

2. Approach43

RLs is part of the Procrustes framework that aims to superimpose a set of points with44

respect to another through three operations: a translation, a rotation, and a scaling. The45

optimal transfer matrix RotX!Y can be estimated from the singular value decomposition46

(SVD) of the covariance matrix X
0
Y . SVDs factorize any matrix as the product of three47

matrices (Equation 3).48

X0Y = U⌃V0 (3)

U and V are two rotation matrices which computes the transfer matrix to superimpose49

X on Y or reciproquely Y on X. All the elements of ⌃ except its diagonal are equal to50

zero. The diagonal elements are the singular values. Singular values are the extention of51
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the eigenvalues to non-square matrices. CovLs(X,Y) can also be computed from singular52

values (Equation 4).53

CovLs(X,Y) =
Trace(⌃)

n� 1
(4)

This expression actually illustrates that CovLs(X,Y) is the variance of the projections of54

X on Y or of the reciprocal projections. Therefore CovLs(X,Y) and RLs(X,Y) are always55

positive and rotation independant. Here we propose to partitionate Trace(⌃), the variation56

amount corresponding to CovLs(X,Y), in two components. The first corresponds to the57

actual shared information between X and Y. The second, corresponds to the over-fitting58

effect. It that can be estimated as the average variation shared by two random matrices of59

same structure as X and Y noted RCovLs(X,Y). ICovLs(X,Y), the informative part of60

CovLs(X,Y), is computed using Equation (5).61

ICovLs(X,Y) = CovLs(X,Y)� RCovLs(X,Y) (5)

Similarly the informative counter-part of VarLs(X) is defined as IVarLs(X) =62

ICovLs(X,X), and IRLs(X,Y) the informative Procrustes correlation coefficient as defined63

in Equation (6).64

IRLs(X,Y) =
ICovLs(X,Y)

IVarLs(X) IVarLs(Y)
(6)

As in the case of RLs(X,Y), IRLs(X,Y) 2 [0; 1], the 0 value corresponding to no65

correlation and the maximum value 1 reflects two strictly homothetic data sets.66

3. Methods67

3.1. Reduction of data dimensions68

The numerical algorithms used to compute IRLs, (i.e. SVD decomposition, generation of69

multivariate normal random numbers) present complexities that may hinder their application70

to high dimensional matrices. To solve this problem, the dimensions of X, Y matrices71

are first reduced using principal component analysis. Such a transformation loses no data72
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variation, but reduces the size of a n⇥ p matrix to n⇥min(n, p). The use of a multi-scale73

method to reduce the size of the original data can also be applied to allow the use of distance74

matrices as input data. In this case, the coordinates of individuals are estimated from their75

distances using or principal coordinate analyze for metrics or a non-metric multi-dimensional76

scaling for other distances. Here by X, Y will design multidimensional scaling projections77

of the original data.78

3.2. Monte-Carlo estimation of RCovLs(X,Y)79

For every values of p and q including 1, RCovLs(X,Y) can be estimated using a series80

of k random matrices RX = {RX1,RX2, ...,RXk} and RY = {RY1,RY2, ...,RYk} where81

each RXi and RYi have the same structure as X and Y, respectively, in terms of number82

of columns and of the covariance matrix of these columns.83

RCovLs(X,Y) =
⌃k

i=1 CovLs(RXi,RYi)

k
(7)

To estimate IVarLs(X), which is equal to ICovLs(X,X) , RCovLs(X,X) is estimated84

with two independent sets of random matrix RX and RY , both having the same structure85

than X.86

Empirical assessment of RCovLs(X,Y)87

For two random vectors x and y of length n, the average coefficient of determination is88

R2 = 1/(n � 1). This value is independent of the distribution of the x and y values, but89

what about the independence of RCovLs(X,Y) to the distributions of X and Y ? To test90

this independance and to assess the reasonnable randomization effort needed to estimate91

RCovLs(X,Y), this value is estimated for four matrices K, L, M, N of n = 20 rows and92

10, 20, 50, 100 columns, respectively. Values of the four matrices are drawn from a normal93

or an exponential distribution, with k 2 {10, 100, 1000} randomizations tested to estimate94

RCovLs(X,Y) and the respective standard deviation �(RCovLs(X,Y)). The VarLs of the95

generated matrices is equal to 1, therefore the estimated CovLs are equals to the RLs.96
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3.3. Simulating data for testing sensibility to overfitting97

To test overfitting, correlations were mesured between two random matrices of same98

dimensions. Each matrix is n⇥ p with n = 20 and p 2 [2, 50]. Each p variables were drawn99

from a centered and reduced normal distribution N (0, 1). Eight correlation coefficients were100

tested: RLs the original Procrustes coefficient ; IRLs this work ; RV the original R for vector101

data (Robert and Escoufier, 1976) ; RV adjMaye, RV2 and RV adjGhaziri three modified102

versions of RV (El Ghaziri and Qannari, 2015; Mayer et al., 2011; Smilde et al., 2009) ; dCor103

the original distance correlation coefficient (Székely et al., 2007) ; and dCor_ttest, a modified104

version of dCor not sensible to overfitting (SzéKely and Rizzo, 2013). For each p value, 100105

simulations were run. Computation of IRLs were estimated with 100 randomizations.106

For p = 1, random vectors with n 2 [3, 25] are generated. As above, data were drawn107

from N (0, 1) and k = 100 simulations which were run for each n. The original Pearson108

correlation coefficient R and the modified version IR are used to estimate correlation between109

both vectors.110

3.4. Empirical assessment of the coefficient of determination111

As in the case of the coefficient of determination (R2), RLs2 represents the part of shared112

variation between two matrices. Because of over-fitting in high-dimension data, RLs and113

therefore RLs2 are over-estimated.114

Between two matrices115

To test how the IRLs version of the coefficient of determination IRLs2 can perform to116

evaluate the shared variation, pairs of random matrices were produced for two values of117

p 2 {10, 100} and n 2 {10, 25}, and for several levels of shared variations ranging between118

0.1 and 1 using 0.1 increments. For each combination of parameters, k = 100 simulations119

were run, and both RLs2 and IRLs2 were estimated using 100 randomizations. To generate120

two random matrices A, B, sharing w 2 [0, 1] part of variation, two independent random121

matrices A and � were generated such as VarLs(A) = 1 and VarLs(�) = 1.The �rot122

matrix was computed as the alignment of � on A using the optimal Procrustes rotation.123
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Then B is computed using equation 8.124

B = A⇥
p
w +�rot ⇥

p
1� w. (8)

Between two vectors125

Coefficient of determination between two vectors also suffers from over-estimation when126

n, the number of considered points, is small. On average, for two random vectors of size n,127

R2 = 1/(n� 1). This random part of the shared variation inflates the observed shared vari-128

ation even for non-random vectors. In the context of multiple linear regression, Theil (1958)129

proposed an adjusted version of the coefficient of determination (Equation 9), correcting for130

both the effect of the number of vectors (p) and the vector size (n).131

R
2
adj = 1� (1�R

2)
n� 1

n� p� 1
(9)

To evaluate the strength of that over-estimation and the relative effect of the correction132

proposed by Theil (1958) and by IRLs, pairs of random vectors were produced for n 2133

{10, 25}, and for several levels of shared variations ranging between 0.1 and 1 using 0.1134

increments. For each combination of parameters, k = 100 simulations were run, and R
2,135

R
2
adj and IRLs2 were estimated using 100 randomizations.136

3.5. Testing the significance of IRLs(X,Y)137

The significance of IRLs(X,Y) can be tested using permutation test as defined in Jackson138

(1995) or Peres-Neto and Jackson (2001) and implemented respectively in the protest139

method of the vegan R package (Dixon, 2003) or the procuste.rtest method of the ADE4140

R package Dray and Dufour (2007).141

It is also possible to take advantage of the Monte-Carlo estimation of RCovLs(X,Y)142

to test that ICovLs(X,Y) and therefore IRLs(X,Y) are greater than expected under143

random hypothesis. Over the k randomizations, N>CovLs is estimated by counting when144

RCovLs(X,Y)k > CovLs(X,Y). The Pvalue of the test then can be estimated following145
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Equation (10).146

Pvalue =
N>CovLs

k
(10)

Empirical assessment of ↵-risk for the CovLs test147

To empirically assess the ↵-risk of the Procrustes test based on the randomisations148

realized during the estimation of RCovLs(X,Y), the distribution of Pvalue under H0 was149

compared to a uniform distribution between 0 and 1 (U(0, 1)). To estimate the empirical150

distribution, k = 1000 pairs of n ⇥ p random matrices with n = 20 and p 2 {10, 20, 50}151

were simulated under the null hypothesis of independence. Significante of the Procrustes152

correlation between those matrices was tested using the three approaches: our proposed test153

(CovLs.test) ; the protest method of the vegan R package ; the procuste.rtest method154

of the ADE4 R package. Conformance of the distribution of each set of k Pvalue to U(0, 1)155

was assessed using the Cramer-Von Mises test (Csörgő and Faraway, 1996) implemented in156

the cvm.test function of the R package goftest.157

Empirical power assessment for the CovLs test158

To evaluate the relative the power of the three tests described above, pairs of two random159

matrices were produced for various p 2 {10, 20, 50, 100}, n 2 {10, 15, 20, 25} and two levels160

of shared variations R2 2 {0.05, 0.1}. For each combination of parameters, k = 1000 sim-161

ulations were run. Each test were estimated based on 1000 randomizations for the CovLs162

test, or 1000 permutations for protest and procuste.rtest.163

4. Results164

4.1. Empirical assessment of RCovLs(X,Y)165

Two main parameters can influence the Monte Carlo estimation of RCovLs(X,Y) : the166

distribution used to generate the random matrices, and k the number of random matrix167

pair. Two very different distribution are tested to regenerate the random matrices, the168

normal and the exponential distributions. The normal distribution is symmetric where the169
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normal exponential

p k mean sd mean sd

10

10 0.6048 4.3972⇥ 10�2 0.5876 3.8187⇥ 10�2

100 0.5845 3.4226⇥ 10�2 0.5795 3.6287⇥ 10�2

1000 0.5819 3.5359⇥ 10�2 0.5803 3.6994⇥ 10�2

20

10 0.7586 2.2819⇥ 10�2 0.7596 2.3101⇥ 10�2

100 0.7683 2.1031⇥ 10�2 0.7636 2.1718⇥ 10�2

1000 0.7657 2.0879⇥ 10�2 0.7663 2.1731⇥ 10�2

50

10 0.9090 1.0806⇥ 10�2 0.9070 8.8522⇥ 10�3

100 0.9078 9.2631⇥ 10�3 0.9086 9.4615⇥ 10�3

1000 0.9080 9.1205⇥ 10�3 0.9084 9.4858⇥ 10�3

100

10 0.9541 3.5242⇥ 10�3 0.9532 6.9991⇥ 10�3

100 0.9550 4.3143⇥ 10�3 0.9538 4.9438⇥ 10�3

1000 0.9548 4.6308⇥ 10�3 0.9545 4.8369⇥ 10�3

Table 1: Estimation of RCovLs(X,Y) according to the number of random matrices (k) aligned.

exponential is unsymmetrical with a high probability for small values and a long tail of large170

ones. Despite the use of these contrasted distributions, estimates of RCovLs(X,Y) and of171

�(RCovLs(X,Y)) were identical if we assumed the normal distribution of the RCovLs(X,Y)172

estimator and a 0.95 confidence interval of RCovLs(X,Y)± 2 �(RCovLs(X,Y)) (Table 1).173

4.2. Relative susceptibility of IRLs(X, Y ) to overfitting174

RLs, like RV and dCor, is susceptible to overfitting which increases when n decreases,175

and p or q increase. Because RV is more comparable to R
2, when RLs and dCor are176

more comparable to R, RV values increase more slowly than RLs and dCor values with p177

(Figure 1A). As expected IRLs values for non-correlated matrices are close to 0 regardless178

of p (Figure 1A). The same correction of the overfitting effect can be observed for vectors179

(Figure 1B)180

November 16, 2020



4.3. Evaluating the shared variation181

Between two matrices182

For two matrices, our proposed corrected version of RLs2 (IRLs2) provided a good esti-183

mate of the shared variation and was robust to the phenomenon of over-fitting (Figure 2).184

Only a small over estimation was observed when p = 10 for the lowest values of the simulated185

shared variations ( 0.4).186

Between two vectors187

Vectors can be considered as a single column matrix, and the efficiency of IRLs2 to188

estimate shared variation between matrices can also be used to estimate shared variation189

between two vectors. Other formulas have been already proposed to better estimate shared190

variation between vectors in the context of linear models. Among them the one presented in191

Equation 9, is the most often used and is the one implemented in R linear model summary192

function. On simulated data, IRLs2 performs better than the simple R
2 and its modified193

version R
2
adj commonly used (Figure 3). Whatever the estimator the bias decrease with194

the simulated shared variation. Nevertheless for every tested cases the median of the bias195

observed is smaller than with both other estimators, even if classical estimators well perfom196

for large values of shared variation.197

4.4. pvalue distribution under null hyothesis198

As expected, Pvalues of the CovLs test based on the estimation of RCovLs(X, Y ) are199

uniformely distributed under H0. whatever the p tested (Table 2). This ensure that the200

probability of a Pvalue 6 ↵-risk is equal to ↵-risk. Moreover Pvalues of the CovLs test are201

strongly linerarly correlated with those of both the other tests (R2 = 0.996 and R
2 = 0.996202

respectively for the correlation with vegan::protest and ade4::procuste.rtest Pvalues).203

The slopes of the corresponding linear models are respectively 0.997 and 0.996.204

4.5. Power of the test based on randomisation205

Power of the CovLs test based on the estimation of RCovLs(X, Y ) is equivalent of the206

power estimated for both vegan::protest and ade4::procuste.rtest tests (Table 3). As207
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Cramer-Von Mises p.value

p CovLs test protest procuste.rtest

10 0.132 0.126 0.111

20 0.455 0.510 0.474

50 0.814 0.764 0.833

Table 2: Pvalues of the Cramer-Von Mises test of conformity of the distribution of Pvalues correlation test

to U(0, 1) under the null hypothesis.

for the two other tests, power decreases when the number of variable (p or q) increases, and208

increase with the number of individuals and the shared variation. The advantage of the test209

based on the Monte-Carlo estimation of RCovLs(X, Y ) is to remove the need of running a210

supplementary set of permutations when IRLs is computed.211

5. Discussion212

Correcting the over-adjustment effect on metrics assessing the relationship between high213

dimension datasets has been a constant effort over the past decades. Therefore, IRLs can214

be considered as a continuation of the extension of the toolbox available to biologists for215

analyzing their omics data. The effect of the proposed correction on the classical RLs216

coefficient is as strong as the other ones previously proposed for other correlation coefficients217

measuring relationship between vector data (see Figure 2, e.g. Smilde et al., 2009; SzéKely218

and Rizzo, 2013). When applied to univariate data, RLs is equal to the absolute value of the219

Pearson correlation coefficient, hence, and despite it is not the initial aim of that coefficient,220

IRLs can also be used to evaluate correlation between two univariate datasets. Using IRLs221

for such data sets is correcting for spurious correlations when the number of individual is222

small more efficiently than classical correction (see Figure 3, Theil, 1958).223

The main advantage of IRLs over other matrix correlation coefficients is that it allows224

for estimating shared variation between two matrices according to the classical definition of225

variance partitioning used with linear models. This opens the opportunity to develop linear226

models to explain the variation of a high dimension dataset by a set of other high dimension227
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R
2 5% 10%

p 10 20 50 100 10 20 50 100

n power = 1� �-risk

Covls.test

10 0.49 0.45 0.40 0.45 0.76 0.69 0.70 0.68

15 0.88 0.80 0.75 0.75 0.99 0.98 0.96 0.95

20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00

25 1.00 1.00 0.99 0.98 1.00 1.00 1.00 1.00

protest

10 0.50 0.45 0.40 0.45 0.77 0.70 0.70 0.68

15 0.88 0.80 0.75 0.75 0.99 0.98 0.96 0.95

20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00

25 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

procuste.rtest

10 0.50 0.45 0.41 0.45 0.76 0.69 0.70 0.68

15 0.88 0.80 0.74 0.75 0.99 0.98 0.96 0.96

20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00

25 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

Table 3: Power estimation of the Procrustes tests for two low level of shared variations 5% and 10%.

data matrices.228

6. Conclusion229

A common approach to estimate strengh of the relationship between two variables is to230

estimate the part of shared variation. This single value ranging from zero to one is easy to231

interpret. Such value can also be computed between two sets of variable, but the estimation232

is more than for simple vector data subject to over estimation because the over-fitting233

phenomena which is amplified for high dimensional data. With IRLs and its squared value,234

we propose an easy to compute correlation and determination coefficient far less biased235

than the original Procrustean correlation coefficient. Every needed function to estimate236

the proposed modified version of these coefficients are included in a R package ProcMod237

available for download from the Comprehensive R Archive Network (CRAN).238
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Appendix274

A. Notations275

x (vector) bold lowercase.

X (matrix) bold uppercase.

i = 1, ..., n object index.

j = 1, ..., p variable index.

k iteration index.

X0 The transpose of X.

XY Matrix multiplication of X

and Y.

Diag(X) A column matrix composed

of the diagonal elements of

X.

X1/2 Matrix square root of X.

Trace(X) The trace of X.

276
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Figure 1: Susceptibility to overfitting for various correlation coefficients. A) Both simulated data sets are

matrices of size (n ⇥ p) with p > 1. B) Correlated data sets are vectors (p = 1) with a various number of

individuals n (vector length). For both A & B, 100 simulations were run for each combination of parameters.
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Figure 2: Shared variation (R2) between two matrices has measured using both the corrected (IRLs) and

the original (RLs) versions of the Procrustean correlation coefficient. A gradient of R2 was simulated for two

population sizes (n 2 {10, 25}) and two numbers of descriptive variables (p 2 {10, 100}). The distribution

of differences between the observed and the simulated shared variation is plotted for each condition. The

black dashed line corresponds to a perfect match where measured R2 equals the simulated one.
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Figure 3: Shared variation between two vectors is measured using the classical R2, its adjusted version R2
adj

and (IRLs2). A gradient of shared variation is simulated for two vector sizes (n 2 {10, 25}). The black

dashed line corresponds to a perfect match where measured R2 equals the simulated one.
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