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1 Introduction
Multidimensional data and even high-dimensional data, where the
number of variables describing each sample is far larger than the
sample count are now regularly produced in functional genomics (e.g.
transcriptomics, proteomics or metabolomics) and molecular ecology (e.g.
DNA metabarcoding). Using various techniques, the same sample set can
be described by several multidimensional data sets, each one describing a
different aspect of the samples. This invites using data analysis methods
able to evaluate mutual information shared by these different descriptions.
Correlative approaches can be a first and simple way to decipher pairwise
relationships of those data sets.

Since a long time ago, several coefficients have been proposed to
measure correlation between two matrices (for a comprehensive review see
?). But when applied to high-dimensional data, they suffer from the over-
fitting effect leading them to estimate a high correlation even for unrelated
data sets. Modified versions of some of these matrix correlation coefficients
have been already proposed to tackle this problem. The RV2 coefficient
(?) is correcting the original RV coefficient (?) for over-fitting. Similarly,
a modified version of the distance correlation coefficient dCor (?) has
been proposed by ?. dCor has the advantage over the other correlation
factors for not considering only linear relationships. Here we will focus
on the Procrustes correlation coeficient RLs proposed by ? and by ?. Let
the define Trace, a function summing the diagonal elements of a matrix.

For a n × p real matrix X and anothet a n × q real matrix Y

defining respectively two sets of p and q centered variables caracterizingn
individuals, we define CovLs(X,X) an analog of covariance applicable
to vectorial data following Equation (1)

CovLs(X,Y) =
Trace((XX′YY′)1/2)

n− 1
(1)

and VarLs(X) as CovLs(X,X). RLs can then be expressed as
follow in Equation (2).

RLs(X,Y) =
CovLs(X,Y)√

VarLs(X) VarLs(Y)
(2)

Procrustean analyses have been proposed as a good alternative to
Mantel’s statistics for analyzing ecological data, and more generally for
every high-dimensional data sets (?). Among the advantages of Rls, its
similarity with the Pearson correlation coefficient R (?) has to be noticed.
Considering CovLs(X,Y) and VarLs(X) respectively corresponding to
the covariance of two matrices and the variance of a matrix, Equation (2)
highlight the analogy between both the correlation coefficients. Moreover,
when p = 1 and q = 1, RLs = |R|.

2 Approach
RLs is part of the procruste framework that aims to superimpose a set
of points with respect to another through three operations: a translation,
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a rotation and a scaling. The optimal transfert matrix RotX→Y can be
estimated from the singular value decomposition (SVD) of the covariance
matrix X′Y . SVD factorize any matrix as the product of three matrices
(Equation 3).

X′Y = UΣV′ (3)

U and V are two rotation matrices allowing to compute the transfer
matrix to superimpose X on Y or reciproquly Y on X. All the elements
of Σ except its diagonal are equal to zero. The diagonal elements are the
singular values. Singular values are the extention of the eigenvalues to
non square matrices. CovLs(X,Y) can also be computed from singular
values (Equation 4).

CovLs(X,Y) =
Trace(Σ)

n− 1
(4)

This expression illustrates that actually CovLs(X,Y) is the variance
of the projections of X on Y or of the reciproque projection.
Therefore CovLs(X,Y) and RLs(X,Y) are always positive and
rotation independante. Here we propose to partitionate this variance in two
components. A fisrt one corresponding to the actual shared information
between X and Y, and a second part that corresponds to what two random
matrices of same structure than X and Y are sharing. This second part
is estimated as RCovLs(X,Y) the mean of such random correlation.
ICovLs(X,Y) the informative part of CovLs(X,Y) is computed using
Equation (5).

ICovLs(X,Y) = Max

CovLs(X,Y)− RCovLs(X,Y)

0
(5)

Similarly the informative counter-part of VarLs(X) is defined as
IVarLs(X) = ICovLs(X,X), and IRLs(X,Y) the informative
Procruste correlation coefficient as follow.

IRLs(X,Y) =
ICovLs(X,Y)

IVarLs(X) IVarLs(Y)
(6)

Like RLs(X,Y) IRLs(X,Y) ∈ [0; 1] with the 0 value
corresponding to not correlation and the maximum value 1 reached for
two strictly homothetic data sets.

The corollary of ICovLs(X,Y) and IVarLs(X) definitions is that
ICovLs(X,Y) > 0 and IVarLs(X) > 0. Therefore for M =

{M1,M2, ...,Mk} a set of k matrices with the same number of row, the
informative covariance matrix C defined as Ci,j = ICovLs(Mi,Mj)

for is definite positive and symmetrical. This allows for defining the
precision matrix P = C−1 and the related partial correlation coeficent
matrix IRLspartial usingEquation (7)

IRLspartial(Mi,Mj) =
Pi,j√
Pi,iPj,j

(7)

3 Methods

3.1 Monte-Carlo estimation of RCovLs(X,Y)

For every values of p and q including 1, RCovLs(X,Y) can be estimated
using a serie of k random matrices RX = {RX1,RX2, ..., RXk} and
RY = {RY1,RY2, ...,RYk} where each RXi and RYi have the
same structure respectively than X and Y in term of number of columns
and of standard deviation of these columns.

RCovLs(X,Y) =
Σk

i=1 CovLs(RXi,RYi)

k
(8)

Even when X = Y to estimate VarLs(X), RCovLs(X,Y) is
estimated with two independent sets of random matrixRX andRY , both
having the same structure than X.

Empirical assessment of RCovLs(X,Y)

For two random vectors x and y of length n, the average coefficient of
determination is R2 = 1/(n − 1). This value is independent of the
distribution of the x and y values, but what about the independence
of RCovLs(X,Y) to the distributions of X and Y. To test this
independance and to assess the reasonnable randomization effort needed
to estimate RCovLs(X,Y), this value is estimated for four matrices
K, L, M, N of n = 20 rows and respectively 10, 20, 50, 100

columns. Values of the four matrices are drawn from a normal or an
exponential distribution, and k ∈ {10, 100, 1000} randomizations are
tested to estimate RCovLs(X,Y) and the respective standard deviation
σRCovLs(X,Y).

3.2 Simulating data for testing sensibility to overfitting

To test sensibility to overfitting correlations were mesured between two
random matrices of same dimensions. Each matrix is n × p with n =

20 and p ∈ [2, 50]. Each p variables are drawn from a centered and
reduced normal distribution N (0, 1). Eight correlation coefficients have
been tested: RLs the original procruste coefficient , IRLs this work, RV

the original R for vector data (?), RVadjMaye, RV 2 andadjGhaziri three
modified versions of RV (???), dCor the original distance correlation
coefficient (?) and dCor_ttest a modified version of dCor not sensible to
overfitting (?). For each p value, 100 simulations were run. Computation
of IRLs is estimated with 100 randomizations.

For p = 1 random vectors with n ∈ [3, 25] are generated. As above
data are drawn from N (0, 1) and k = 100 simulations are run for each
n. The original Pearson correlation coefficientR and the modified version
IR are used to estimate correlation between both vectors.

3.3 Empirical assessment of the coefficient of
determination

The coefficient of determination (R2) represente the part of shared
variation between two variables. RLs2 keeps the same meaning when
applied to two matrices. But because of over-fitting RLs and therefore
RLs2 are over-estimated.

between two matrices
To test how the IRLs version of the coefficient of determination IRLs2

can perform to evaluate the shared variation, pairs of two random matrices
were produced for two values of p ∈ {10, 100} and n ∈ {10, 25}, and
for several levels of shared variations ranging between 0.05 and 1 by step
of 0.05. For each combination of parameters, k = 100 simulations are
run, and both RLs2 and IRLs2 are estimated using 100 randomizations.

between two vectors
partial determination coefficients
To evaluate capacity of partial determination coefficient IRLs2partial to
distangle nested correlations, four matrices A, B, C, D of size n ×
p = 20 × 200 are generated according to the schema: A shares 80% of
variation with B, that shares 40% of variation with C, sharing 20% of
variation with D. These direct correlations induce indirect ones spreading
the total variation among each pair of matricies according to Figure 1. The
simulation is repeadted 100 times, for every simutation IRLs2partial and
RLs2partial are estimated for each pair of matrices.
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Fig. 1. Theoritical distribution of the shared variation between the four matrices
A, B, C, D, expressed in permille.

3.4 Testing significance of IRLs(X,Y)

Significance of IRLs(X,Y) can be tested using permutation test as
defined in ? or ? and implemented respectively in the protestmethod of
the vegan R package (?) or the procuste.rtest method of the ADE4
R package ?.

It is also possible to take advantage of the Monte-Carlo estimation of
RCovLs(X,Y) to test that ICovLs(X,Y) and therefore IRLs(X,Y)

are greater than expected under random hypothesis. Let counting over
the k randomization when RCovLs(X,Y)k greater than CovLs(X,Y)

name this countsN>CovLs. Pvalue of the test can be estimated following
Equation (9).

Pvalue =
N>CovLs

k
(9)

Empirical assessment of α-risk for the CovLs test
To assess empirically the α-risk of the procruste test based on the
randomisations realized during the estimation of RCovLs(X,Y),
distribution ofPvalue under theH0 is comparaed to a uniform distribution
between 0 and 1 (U(0, 1)). To estimate such empirical distribution,
k = 1000 pairs of n × p random matrices with n = 20 and p ∈
{10, 20, 50} are simulated under the null hypothesis of independancy.
Procruste correlation between whose matrices is tested based on three
tests. Our proposed test (CovLs.test), the protest method of the
vegan R package and the procuste.rtest method of the ADE4 R
package. Conformance of the distribution of each set of k Pvalue to
U(0, 1) is assessed using the Cramer-Von Mises test (?) implemented
in the cvm.test function of the R package goftest.

Empirical power assessment for theCovLs test
To evaluate relative power of the three considered tests, pairs of to
random matrices were produced for various p ∈ {10, 20, 50, 100}, n ∈
{10, 15, 20, 25} and two levels of shared variations R2 ∈ {0.05, 0.1}.
For each combination of parameters, k = 1000 simulations are run. Each

A)
RLs RV dCor

2 5101520253035404550 2 5101520253035404550 2 5101520253035404550

−0.25

0.00

0.25

0.50

0.75

1.00

p

co
rr

el
at

io
n

Method

RLs

IRLs

RV

RVadjMaye

RV2

RVadjGhaziri

dCor

dCor_ttest

B)

0.00

0.25

0.50

0.75

1.00

1.25

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

n

|R
|

Method

R

IR

Fig. 2. A) Sensibility to overfitting for various correraltion coefficients. (A) Both simulated
data sets are matrices of size (n × p) with p > 1. B) Correlated data sets are vectors
(p = 1) with a various number of individuals n (vector length). A & B) 100 simulations
are run for each combination of parameters

test are estimated based on 1000 randomizations for the CovLs test, or
permutations for protest and procuste.rtest.

4 Results

4.1 Relative sensibility of IRLs(X,Y ) to overfitting

RLs like RV and dCor is sensible to overfitting which increase when
n decrease, and p or q increase. Because RV is more comparable to R2

when RLs and dCor are more comparable to R, RV values increase
more slowly than RLs and dCor values with p (Figure 2A). Because
of its definition IRLs values for non-correlated matrices are close to 0

whatever p (Figure 2A).

4.2 Evaluating the shared variation

between two matrices
RLs can be considered for matrices as a strict equivalent of Pearson’s R for
vectors. Therefore its squared value is an estimator of the shared variation
between two matrices. But because of over-fitting the estimation is over-
estimated. The proposed corrected vection (IRLs) of that coefficient is able
to provide a good estimate of the shared variation and is perfectly robust
to the over-fitting phenomenon (Figure 3). Only a small over evalution is
observable for the low values of simulated shared variation.
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Fig. 4. Estimation error on the partial determination coefficient. Error is defined as the
absolute value of the difference between the expected and the estimated partialR2 using the
corrected IRLspartial and not corrected RLspartial procruste correlation coefficient.

between two vectors
partial determination coefficients
The simulated correlation network between the four matrices
A, B, C, D induced moreover the direct simulated correlation a network
of indirect correlation and therefore shared variances (Figure 1). In such
system, the interest of partial correlation coefficients and their associated
partial determination coefficients is to measure correlation between a
pair of variable without accounting for correlation which is explained
by other variables, hence extracting the pure correlation between these
two matrices. From Figure 1, the expected partial shared variation
between A and B is 480/(200 + 480) = 0.706; between B and C,
64/(480 + 120) = 0.107; and between C and D 120/800 = 0.150.
All other partial coeficient are expected to be equal to 0.

Table 1.Pvalues of the Cramer-Von Mises test of conformity of the distribution
of Pvalues correlation test to U(0, 1) under the null hypothesis.

Cramer-Von Mises p.value
p CovLs test protest procuste.rtest

10 0.323 0.395 0.348
20 0.861 0.769 0.706
50 0.628 0.783 0.680

4.3 pvalue distribution under null hyothesis

As expected, Pvalues of the CovLs test based on the estimation of
RCovLs(X,Y ) are uniformely distributed under H0. whatever the p
tested (Table 1). This ensure that the probability of a Pvalue 6 α-risk is
equal toα-risk. MoreoverPvalues of theCovLs test are strongly linerarly
correlated with those of both the other tests (R2 = 0.996 and R2 =

0.996 respectively for the correlation with vegan::protest and
ade4::procuste.rtest Pvalues). The slopes of the corresponding
linear models are respectively 0.998 and 0.999.

4.4 Power of the test based on randomisation

Power of the CovLs test based on the estimation of RCovLs(X,Y )

is equivalent of the power estimated for both vegan::protest and
ade4::procuste.rtest tests (Table 2). As for the two other
tests, power decreases when the number of variable (p or q) increases
and increase with the number of individuals and the shared variation.
The advantage of the test based on the Monte-Carlo estimation of
RCovLs(X,Y ) is to remove the need of running a supplementary set
of permutations when IRLs iscomputed.
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Table 2. Power estimation of the procruste tests for two low level of shared
variations 5% and 10%.

R2 5% 10%
p 10 20 50 100 10 20 50 100
n power = 1− β-risk

Covls.test

10 0.49 0.45 0.40 0.45 0.76 0.68 0.70 0.68
15 0.88 0.80 0.75 0.75 0.99 0.98 0.96 0.95
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.98 1.00 1.00 1.00 1.00

protest

10 0.50 0.45 0.40 0.45 0.77 0.70 0.70 0.68
15 0.88 0.80 0.75 0.75 0.99 0.98 0.96 0.95
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

procuste.rtest

10 0.50 0.45 0.41 0.45 0.76 0.69 0.70 0.68
15 0.88 0.80 0.74 0.75 0.99 0.98 0.96 0.96
20 0.99 0.96 0.94 0.93 1.00 1.00 1.00 1.00
25 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

5 Discussion
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Text. Text Text Text Text Text Text Text Text. Text Text Text Text Text
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Text.

6 Conclusion
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Appendix

A Notations
x (vector) bold lowercase.
X (matrix) bold uppercase.
i = 1, ..., n object index.
j = 1, ..., p variable index.
k iteration index.
X′ The transpose of X.
XY Matrix multiplication of X and Y.
X ◦Y Hadamard product of X and Y.
X◦y Hadamard power of X.
Diag(X) A column matrix composed of the diagonal

elements of X.
Trace(X The trace of X.


