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1 Introduction

Multidimensional data and even high-dimensional data, where the
number of variables describing each sample is far larger than the
sample count, are now regularly produced in functional genomics (e.g.
transcriptomics, proteomics or metabolomics) and molecular ecology (e.g.
DNA metabarcoding). Using various techniques, the same sample set
can be described by several multidimensional data sets, each of them
describing a different facet of the samples. This invites using data analysis
methods able to evaluate mutual information shared by these different
descriptions. Correlative approaches can be a first and simple way to
decipher pairwise relationships of those data sets.

Since a long time ago, several coefficients have been proposed to
measure correlation between two matrices (for a comprehensive review
see Ramsay et al., 1984). But when applied to high-dimensional data,
they suffer from the over-fitting effect leading them to estimate a high
correlation even for unrelated data sets. Modified versions of some of
these matrix correlation coefficients have been already proposed to tackle
this problem. The RV coefficient (Smilde et al., 2009) is correcting
the original RV coefficient (Escoufier, 1973) for over-fitting. Similarly,
a modified version of the distance correlation coefficient dCor (Székely

et al.,2007) has been proposed by SzéKely and Rizzo (2013). dCor has the
advantage over the other correlation factors for not considering only linear
relationships. Here we will focus on the Procrustes correlation coefficient
RLs proposed by Lingoes and Schonemann (1974) and by Gower (1971).
Let define T'race, a function summing the diagonal elements of a matrix.
Fora m X p real matrix X and a second n X ¢ real matrix Y
defining respectively two sets of p and g centered variables caracterizing n
individuals, we define CovLs(X, X) an analog of covariance applicable
to vectorial data following Equation (1)

Trace((XX'YY')1/2)
n—1

and VarLs(X) as CovLs(X,X). RLs can then be expressed as
follow in Equation (2).

CovLs(X,Y) =

(1

CovLs(X,Y)

RLs(X,Y) = \/VarLS(X) VarLs(Y)

@

Procrustean analyses have been proposed as a good alternative to
Mantel’s statistics for analyzing ecological data, and more generally
for every high-dimensional data sets (Peres-Neto and Jackson, 2001).
Among the advantages of RLs, its similarity with the Pearson
correlation coefficient R (Bravais, 1844) has to be noticed. Considering
CovLs(X,Y) and VarLs(X) respectively corresponding to the
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covariance of two matrices and the variance of a matrix, Equation (2)
highlight the analogy between both the correlation coefficients. Moreover,
whenp = 1land ¢ = 1, RLs = |R|.

2 Approach

RLs is part of the procruste framework that aims to superimpose a set
of points with respect to another through three operations: a translation,
a rotation and a scaling. The optimal transfert matrix Rot x _,y can be
estimated from the singular value decomposition (SVD) of the covariance
matrix XY . SVD factorize any matrix as the product of three matrices
(Equation 3).

X'Yy =UxV’ 3)

U and V are two rotation matrices allowing to compute the transfer
matrix to superimpose X on Y or reciproquely Y on X. All the elements
of ¥ except its diagonal are equal to zero. The diagonal elements are the
singular values. Singular values are the extention of the eigenvalues to
non square matrices. CovLs(X,Y') can also be computed from singular
values (Equation 4).

Trace(X)

CovLs(X,Y) = 1
n—

“

This expression illustrates that actually CovLs(X,Y) is the variance
of the projections of X on Y or of the reciproque projection.
Therefore CovLs(X,Y) and RLs(X,Y) are always positive and
rotation independante. Here we propose to partitionate this variance in two
components. A fisrt one corresponding to the actual shared information
between X and Y, and a second part that corresponds to what two random
matrices of same structure than X and Y are sharing. This second part
is estimated as RCovLs(X,Y) the mean of such random correlation.
ICovLs(X,Y), the informative part of CovLs(X,Y), is computed
using Equation (5).

CovLs(X,Y) — RCovLs(X,Y)
ICovLs(X,Y) = Max Q)]
0

Similarly the informative counter-part of VarLs(X) is defined as
IVarLs(X) = ICovLs(X,X), and IRLs(X,Y) the informative
Procruste correlation coefficient as follow.

ICovLs(X,Y)
IVarLs(X) IVarLs(Y)

IRLs(X,Y) = ©)

Like RLs(X,Y), IRLs(X,Y) € [0;1] with the O value
corresponding to not correlation and the maximum value 1 reached for
two strictly homothetic data sets.

The corollary of ICovLs(X,Y) and IVarLs(X) definitions is that
ICovLs(X,Y) > 0 and IVarLs(X) > 0. Therefore for M =
{M1, Mo, ..., M} aset of k matrices with the same number of row, the
informative covariance matrix C defined as C; ; = ICovLs(M;, M)
for is definite positive and symmetrical. This allows for defining the
precision matrix P = C~! and the related partial correlation coefficent
matrix IRLspqr¢5q1 using Equation (7)

Pi; @)

VPP

IRLSpaTtial (M“ MJ) =

3 Methods
3.1 Monte-Carlo estimation of RCovLs(X, Y)

For every values of p and ¢ including 1, RCovLs(X, Y) can be estimated
using a serie of k random matrices RX = {RX1, RXg, ..., RX}} and
RY = {RY1,RY2,...,RY} where each RX; and RY; have the
same structure respectively than X and Y in term of number of columns
and of covariance matrix of these columns.

k| CovLs(RX;, RY;)
k
Even when X = Y to estimate IVarLs(X), RCovLs(X, X) is

estimated with two independent sets of random matrix RX and RY’, both
having the same structure than X.

RCovLs(X,Y) = ®)

Empirical assessment of RCovLs(X,Y)

For two random vectors x and y of length n, the average coefficient of
determination is R? = 1 /(n — 1). This value is independent of the
distribution of the x and y values, but what about the independence
of RCovLs(X,Y) to the distributions of X and Y. To test this
independance and to assess the reasonnable randomization effort needed
to estimate RCovLs(X,Y), this value is estimated for four matrices
K, L M,N of n = 20 rows and respectively 10,20, 50,100
columns. Values of the four matrices are drawn from a normal or an
exponential distribution, and k£ € {10,100, 1000} randomizations are
tested to estimate RCovLs(X,Y) and the respective standard deviation
o(RCovLs(X,Y)). The VarLs of the generated matrices is equal to 1
therefore the estimated CovLs are equals to RLs.

3.2 Simulating data for testing sensibility to overfitting

To test sensibility to overfitting correlations were mesured between two
random matrices of same dimensions. Each matrix is n X p with n =
20 and p € [2,50]. Each p variables are drawn from a centered and
reduced normal distribution (0, 1). Eight correlation coefficients have
been tested: RLs the original procruste coefficient , IRLs this work, RV
the original R for vector data (Robert and Escoufier, 1976), RV adj M aye,
RV 2 and RV adjGhaziri three modified versions of RV (El Ghaziri and
Qannari, 2015; Mayer et al., 2011; Smilde et al., 2009), dCor the original
distance correlation coefficient (Székely et al., 2007) and dCor_ttest a
modified version of dCor not sensible to overfitting (SzéKely and Rizzo,
2013). For each p value, 100 simulations were run. Computation of IRLs
is estimated with 100 randomizations.

For p = 1 random vectors with n € [3, 25] are generated. As above
data are drawn from N'(0, 1) and k = 100 simulations are run for each
n. The original Pearson correlation coefficient R and the modified version
IR are used to estimate correlation between both vectors.

3.3 Empirical assessment of the coefficient of
determination

The coefficient of determination (R?) represente the part of shared
variation between two variables. RLs? keeps the same meaning when
applied to two matrices. But because of over-fitting RLs and therefore
RLs? are over-estimated.

between two matrices

To test how the IRLs version of the coefficient of determination IRLs?
can perform to evaluate the shared variation, pairs of random matrices
were produced for two values of p € {10,100} and n € {10,25}, and
for several levels of shared variations ranging between 0.1 and 1 by step
of 0.1. For each combination of parameters, & = 100 simulations are run,
and both RLs? and IRLs? are estimated using 100 randomizations.
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Fig. 1. Theoritical distribution of the shared variation between the four matrices
A, B, C, D, expressed in permille.

between two vectors

Coefficient of determination between two vectors also suffers from over-
estimation when n the number of considered points is small. On average
for two random vectors of size n, B2 = 1/(n — 1). This random
part of the shared variation inflates the observed shared variation even
for not random vectors. In the context of multiple linear regression,
Theil et al. (1958) proposed an adjusted version of the coefficient of
determination (Equation 9) correcting for both the effect of the number

of vector considered (p) and of the vector size (n).

2 sy n—1
Ry =1-(1- R} ©

n—p-—1

To evaluate the strength of that over-estimation and the relative effect
of the correction proposed by Theil et al. (1958) and by IRLs, pairs of
random vectors were produced for n € {10, 25}, and for several levels

of shared variations ranging between 0.1 and 1 by step of 0.1. For each

2

combination of parameters, k = 100 simulations are run, and R2, Radj

and TRLs? are estimated using 100 randomizations.

partial determination coefficients

To evaluate capacity of partial determination coefficient IRLsz artial 1O
distangle nested correlations, four matrices A, B, C, D of size n X
p = 20 X 200 are generated according to the schema: A shares 80% of
variation with B, that shares 40% of variation with C, sharing 20% of
variation with D. These direct correlations induce indirect ones spreading
the total variation among each pair of matricies according to Figure 1. The
simu;ation is repeadted 100 times, for every simutation IRLsi artial and
RLs

partial A€ estimated for each pair of matrices.

3.4 Testing significance of IRLs(X,Y)

Significance of IRLs(X,Y) can be tested using permutation test
as defined in Jackson (1995) or Peres-Neto and Jackson (2001) and
implemented respectively in the protest method of the vegan R package
(Dixon, 2003) or the procuste . rtest method of the ADE4 R package
Dray and Dufour (2007).

Table 1. Estimation of RCovLs(X,Y) according to the number of
random matrices (k) aligned.

normal exponential
p k mean sd mean sd
10 0.5746 1.3687 x 102 0.5705 1.1714 x 10~2
10 100 0.5824 3.6425 x 1072 0.5794 3.6452 x 1073
1000 0.5806 1.1564 x 10~2  0.5801 1.1515 x 103
10 0.7682 4.5568 x 10~2  0.7729 7.4071 x 10~3
20 100 0.7645 2.1681 x 10~ 0.7695 2.0006 x 10~3
1000 0.7658 6.8923 x 10™%  0.7671 6.6033 x 10~4
10 0.9131 3.4659 x 10~3  0.9102 2.6647 x 10~
50 100 0.9088 8.9318 x 10~*%  0.9086 7.7424 x 10™%
1000 0.9086 2.8590 x 10~%  0.9091 2.8450 x 10~ 4
10 0.9557 1.2939 x 10~2  0.9532 1.7316 x 10~°
100 100 0.9542 4.7043 x 10~%  0.9547 4.6869 x 104
1000 0.9544 1.4547 x 10~*  0.9546 1.4249 x 10~ 4

It is also possible to take advantage of the Monte-Carlo estimation of
RCovLs(X,Y) to test that ICovLs(X,Y) and therefore IRLs(X,Y)
are greater than expected under random hypothesis. Let counting over
the k randomization when RCovLs(X, Y, greater than CovLs(X,Y)
name this counts N~ covLs- Pvalue Of the test can be estimated following
Equation (10).

N .
Pyalue = % (10)

Empirical assessment of o-risk for the CovLs test

To assess empirically the a-risk of the procruste test based on the
randomisations realized during the estimation of RCovLs(X,Y),
distribution of P, 4, under the Hy is compared to a uniform distribution
between 0 and 1 (U4(0,1)). To estimate such empirical distribution,
k = 1000 pairs of n X p random matrices with n = 20 and p €
{10, 20,50} are simulated under the null hypothesis of independancy.
Procruste correlation between whose matrices is tested based on three tests.
Our proposed test (CovLs.test), the protest method of the vegan R
package and the procuste.rtest method of the ADE4 R package.
Conformance of the distribution of each set of k Pygiye to U(0,1) is
assessed using the Cramer-Von Mises test (Csorgd and Faraway, 1996)
implemented in the cvm. test function of the R package goftest.

Empirical power assessment for the Cov Ls test

To evaluate relative power of the three considered tests, pairs of to
random matrices were produced for various p € {10, 20, 50,100}, n €
{10, 15,20, 25} and two levels of shared variations R? € {0.05,0.1}.
For each combination of parameters, k& = 1000 simulations are run. Each
test are estimated based on 1000 randomizations for the C'ovLs test, or
permutations for protest and procuste.rtest.

4 Results
4.1 Empirical assessment of RCovLs(X,Y)

Two main parameters can influence the Monte Carlo estimation of
RCovLs(X,Y) : the distribution used to generate the random matrices
and k the number of random matrix pair. Two very different distribution are
tested to regenerate the random matrices, the normal and the exponential
distributions. The first one is symmetric where the second is not with a
high probability for small values and a long tail of large ones. Despite the
use of these contrasted distributions, estimates of RCovLs(X,Y) and of
o(RCovLs(X,Y)) are identical if we assume the normal distribution
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Fig. 2. A) Sensibility to overfitting for various correraltion coefficients. (A) Both simulated
data sets are matrices of size (n X p) with p > 1. B) Correlated data sets are vectors
(p = 1) with a various number of individuals n (vector length). A & B) 100 simulations

are run for each combination of parameters

of the RCovLs(X,Y) estimator and a 0.95 confidence interval of
RCovLs(X,Y) £ 20(RCovLs(X,Y)) (Table 1).

4.2 Relative sensibility of TRLs(X,Y") to overfitting

RLs, like RV and dCor, is sensible to overfitting which increase when
n decrease, and p or g increase. Because RV is more comparable to R?
when RLs and dCor are more comparable to R, RV values increase
more slowly than RLs and dCor values with p (Figure 2A). Because
of its definition I RLs values for non-correlated matrices are close to 0
whatever p (Figure 2A).

4.3 Evaluating the shared variation

between two matrices

RLs can be considered for matrices as a strict equivalent of Pearson’s R for
vectors. Therefore its squared value is an estimator of the shared variation
between two matrices. But because of over-fitting the estimation is over-
estimated. The proposed corrected vection (IR Ls) of that coefficient is able
to provide a good estimate of the shared variation and is perfectly robust
to the over-fitting phenomenon (Figure 3). Only a small over evalution is
observable for the low values of simulated shared variation.

between two vectors
Vectors can be considered as a single column matrix, and the efficiency
of IRLs? to estimate shared variation between matrices can also be

Table 2. P, 41vcs 0f the Cramer-Von Mises test of conformity of the distribution
of P, q1ues correlation test to U (0, 1) under the null hypothesis.

Cramer-Von Mises p.value
P CovLs test protest procuste.rtest
10 0.323 0.395 0.348
20 0.861 0.769 0.706
50 0.628 0.783 0.680

used to estimate shared variation between two vectors. Other formulas
have been already proposed to better estimate shared variation between
vectors in the context of linear models. Among them the one presented
in Equation 9, is the most often used and is the one implemented in
R linear model summary function. On simulated data, IRLs? performs
better than the simple R? and its modified version Ri aj commonly used
(Figure 4). Whatever the estimator the bias decrease with the simulated
shared variation. Nevertheless for every tested cases the median of the
bias observed is smaller than with both other estimators, even if classical
estimators well perfom for large values of shared variation.

partial coefficient of determination

The simulated correlation network between the four matrices
A, B, C, Dinduced moreover the direct simulated correlation a network
of indirect correlation and therefore shared variances (Figure 1). In such
system, the interest of partial correlation coefficients and their associated
partial determination coefficients is to measure correlation between a pair
of variable without accounting for the part of that correlation which is
explained by other variables, hence extracting the pure correlation between
these two matrices. From Figure 1, the expected partial shared variation
between A and B is 480/(200 + 480) = 0.706; between B and
C, 64/(480 + 120) = 0.107; and between C and D 120/800 =
0.150. All other partial coefficient are expected to be equal to 0.
The effect of the correction introduced in IRLs is clearly weaker and
on the partial coefficient of determination (Figure 5) than on the full
coefficient of determination (Figure 3). The spurious random correlations,
constituting the over-fitting effect, is distributed over all the pair of matrices
A, B, C,D.

4.4 pyaive distribution under null hyothesis

As expected, P,giques Of the CovLs test based on the estimation of
RCovLs(X,Y) are uniformely distributed under Hy. whatever the p
tested (Table 2). This ensure that the probability of a Py qjue < a-risk is
equal to a-risk. Moreover P, 414, s of the Cov Ls test are strongly linerarly
correlated with those of both the other tests (R? = 0.996 and R? =
0.996 respectively for the correlation with vegan: :protest and
aded: :procuste.rtest Py,gyes). The slopes of the corresponding
linear models are respectively 0.998 and 0.999.

4.5 Power of the test based on randomisation

Power of the CovLs test based on the estimation of RCovLs(X,Y)
is equivalent of the power estimated for both vegan: :protest and
aded::procuste.rtest tests (Table 3). As for the two other
tests, power decreases when the number of variable (p or g) increases,
and increase with the number of individuals and the shared variation.
The advantage of the test based on the Monte-Carlo estimation of
RCovLs(X,Y) is to remove the need of running a supplementary set
of permutations when IRLs is computed.
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version R dj and (IRLs2 ). A gradiant of shared variation is simulated for two vector sizes

5 Discussion

Correcting the over-adjustment effect on metrics assessing the relationship
between high dimension datasets is a constant effort over the past decade.
Therefore, IRLs can be considered as a continuation of the extension of the
toolbox available to biologists for analyzing their omics data. The effect of
the proposed correction on the classical RLs coefficient is as strong as the
other ones previously proposed for other correlation coefficients measuring
relationship between vector data (see Figure 3, e.g. Smilde et al., 2009;
SzéKely and Rizzo, 2013). When applied to univariate data, RLs is equal
to the absolute value of the Pearson correlation coefficient, hence, and
despite it is not the initial aim of that coefficient, IRLs can also be used
to evaluate correlation between two univariate datasets. Using IRLs for
such data sets is correcting for spurious correlations when the number of
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Fig. 5. Estimation error on the partial determination coefficient. Error is defined as the
absolute value of the difference between the expected and the estimated partial R? using the

corrected IRLS g ¢4 1 and not corrected RLsy, ¢ 1441 procruste correlation coefficient.

individual is small more efficiently than classical correction (see Figure 4,
Theil et al., 1958).

The main advantage of IRLs over other matrix correlation coefficients
is that it allows for estimating shared variation between two matrices
according to the classical definition of variance partitioning used with
linear models. This opens the opportunity to develop linear models to
explain the variation of a high dimension dataset by a set of other high
dimension data matrices.

The second advantage of IRLs is that its definition implies that the
variance/co-variance matrix of a set of matrices is positive-definite. That
allows for estimating partial correlation coefficients matrix by inverting the
variance/co-variance matrix. The effect of the correction is less strong on
such partial coefficients than on full correlation, but the partial coefficients
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Table 3. Power estimation of the procruste tests for two low level of shared
variations 5% and 10%.

R? 5% 10%
p 10 20 50 100 10 20 50 100
n power = 1 — B-risk

10 049 045 040 045 0.76 0.68 0.70 0.68
15 0.88 0.80 0.75 0.75 0.99 098 0.96 0.95

Covlstest ) 099 096 094 093 100 100 100 1.00
25 100 1.00 099 098 1.00 1.00 1.00 1.00
10 050 045 040 045 077 070 0.70 0.68
15 088 080 075 075 099 098 096 0.95
protest

20 099 096 094 093 1.00 1.00 1.00 1.00
25 1.00 1.00 099 099 1.00 1.00 1.00 1.00
10 0.50 045 041 045 0.76 0.69 0.70 0.68
15 0.88 0.80 0.74 0.75 099 0.98 0.96 0.96
20 099 096 094 093 1.00 1.00 1.00 1.00
25 1.00 1.00 099 0.99 1.00 1.00 1.00 1.00

procuste.rtest

that should theoretically be estimated to zero seem to be better identified
after the correction.

6 Conclusion

A common approach to estimate strengh of the relationship between two
variables is to estimate the part of shared variation. This single value
ranging from zero to one is easy to interpret. Such value can also be
computed between two sets of variable, but the estimation is more than
for simple vector data subject to over estimation because the over-fitting
phenomena which is amplified for high dimensional data. With IRLs
and its squared value, we propose an easy to compute correlation and
determination coefficient far less biased than the original Procrustean
correlation coefficient. Every needed function to estimate the proposed
modified version of these coefficients are included in a R package ProcMod
available for download from the Comprehensive R Archive Network
(CRAN).
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Appendix
A Notations

x (vector) bold lowercase.

X (matrix) bold uppercase.

i=1,...,n object index.

j=1,..,p variable index.

k iteration index.

X’ The transpose of X.

XY Matrix multiplication of X and Y.
Diag(X) A column matrix composed of the diagonal

elements of X.
Trace(X) The trace of X.



