correction.Rmd 3.25 KB
Newer Older
Eric Coissac committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
---
title: "R Notebook"
output: html_notebook
---

```{r}
library(genotype)
```


```{r}
n.sim = 10000

homogenotypes = rep('A')
```

# Impacte de la profondeur de squenage

```{r}
p.hetero = 1/1000
error.rate = 1/100
merror = error_jc(rate = error.rate)
couvertures =1:50
```

```{r}
success.homo = numeric(length = length(couvertures))
i = 0
for (c in couvertures) {
  s = simulate_sites(rep('A',n.sim),
                     rep('A',n.sim),
                     coverage = c,
                     error = merror)
  g = genotyping(s,sequencing.error = error.rate,phetero = p.hetero)
  i = i+1
  success.homo[i] = sum(g$ok) 
}
```

```{r}
plot(couvertures,success.homo,type = "b",cex=0.5,log="x")
```
```{r}
s = simulate_sites(rep('A',n.sim),
                     rep('A',n.sim),
                     coverage = 10,
                     error = merror)
g = genotyping(s,sequencing.error = error.rate,phetero = p.hetero)

hist(log10(g$score))
```

```{r}
s = simulate_sites(rep('A',n.sim),
                     rep('A',n.sim),
                     coverage = 30,
                     error = merror)
g = genotyping(s,sequencing.error = error.rate,phetero = p.hetero)

hist(log10(g$score))
```

```{r}
success.hetero = numeric(length = length(couvertures))
i = 0
for (c in couvertures) {
  s = simulate_sites(rep('A',n.sim),
                     rep('T',n.sim),
                     coverage = c,
                     error = merror)
  g = genotyping(s,sequencing.error = error.rate,phetero = p.hetero)
  i = i+1
  success.hetero[i] = sum(g$ok) 
}
```


```{r}
plot(couvertures,success.hetero,type = "b",cex=0.5,col="blue",log="x")
points(couvertures,success.homo,type = "b",cex=0.5,col="red")

```


```{r}
s = simulate_sites(rep('A',n.sim),
                     rep('T',n.sim),
                     coverage = 10,
                     error = merror)
g = genotyping(s,sequencing.error = error.rate,phetero = p.hetero)

hist(log10(g$score))
```


```{r}
s = simulate_sites(rep('A',n.sim),
                     rep('T',n.sim),
                     coverage = 30,
                     error = merror)
g = genotyping(s,sequencing.error = error.rate,phetero = p.hetero)

hist(log10(g$score))
```


# Impact du taux d'erreur

```{r}
p.hetero = 1/1000
error.rate = 10^seq(from = -4,to = -1, length.out = 50)
couverture = 10
```


```{r}
success.homo = numeric(length = length(error.rate))
i = 0
for (e in error.rate) {
  merror = error_jc(rate = e)
  s = simulate_sites(rep('A',n.sim),
                     rep('A',n.sim),
                     coverage = couverture,
                     error = merror)
  g = genotyping(s,sequencing.error = e,phetero = p.hetero)
  i = i+1
  success.homo[i] = sum(g$ok) 
}

```

```{r}
plot(error.rate,success.homo,type = "b",cex=0.5,log="x")
```


```{r}
success.hetero = numeric(length = length(error.rate))
i = 0
for (e in error.rate) {
  merror = error_jc(rate = e)
  s = simulate_sites(rep('A',n.sim),
                     rep('T',n.sim),
                     coverage = couverture,
                     error = merror)
  g = genotyping(s,sequencing.error = e,phetero = p.hetero)
  i = i+1
  success.hetero[i] = sum(g$ok) 
}

```

```{r}
plot(error.rate,success.hetero,type = "b",cex=0.5,col="blue",log="xy",ylim=c(2000,10000))
points(error.rate,success.homo,type = "b",cex=0.5,col="red")
```